Enrichment of CD4+ and CD8+ T lymphocytes with a column-free flow-based device for clinical cell manufacturing

IF 3.7 3区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Paulina Langa , Kriti Sharma , David L. Sellers , Veronica Placencia , Eric A. Smith , Dan Fick , John R. Wilson , Silin Sa , Nathaniel Ortega , Liping Yu , Yuchen Zhou , Ignacio Núñez , Amittha Wickrema
{"title":"Enrichment of CD4+ and CD8+ T lymphocytes with a column-free flow-based device for clinical cell manufacturing","authors":"Paulina Langa ,&nbsp;Kriti Sharma ,&nbsp;David L. Sellers ,&nbsp;Veronica Placencia ,&nbsp;Eric A. Smith ,&nbsp;Dan Fick ,&nbsp;John R. Wilson ,&nbsp;Silin Sa ,&nbsp;Nathaniel Ortega ,&nbsp;Liping Yu ,&nbsp;Yuchen Zhou ,&nbsp;Ignacio Núñez ,&nbsp;Amittha Wickrema","doi":"10.1016/j.jcyt.2024.12.009","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, adoptive T cell-based immunotherapies have been developed to treat a wide range of hematologic malignancies, including relapsed or refractory non-Hodgkin lymphoma, B-cell leukemia, and multiple myeloma. Most of the commercially approved adoptive T cell therapies are composed of chimeric antigen receptor (CAR)–based T cells, which are a patient's own T cells engineered for recognition of a specific surface antigen, such as CD19 or CD20. Unselected peripheral blood mononuclear cells (PBMCs) have recently been used in several manufacturing protocols, but the vast majority of protocols still use CD4/CD8-selected T cells. The first step in manufacture of these CAR-T products involves simultaneous selection/purification of CD4<sup>+</sup> and CD8<sup>+</sup> (or CD4/CD8 positive) T cells. The typical approach for selection of CD4/CD8 subsets for clinical manufacturing involves immunomagnetic labeling followed by selection of positively labeled cells using static column-based approaches that are prone to cell clogging events and typically take approximately 2 to 3 hours in a closed system. Here, we used a new column-free, flow-based, fully closed system suitable for clinical cell manufacturing for isolation of CD4/CD8 cells with high purity in a rapid fashion that could accommodate varying capacities without compromising cell recovery. This new approach allows markedly faster cell selection, preserving the quality of the cells that are used for downstream CAR-T cell manufacture. We report the results of our successful validation runs using the new MARS Bar enrichment platform using human apheresis-derived leukocytes for CD4/CD8 isolation in a selection buffer or directly in T cell culture media for subsequent CAR-T cell production. Our data show a rapid and robust CD4/CD8 enrichment with an enrichment time shortened to 1 hour or less. Overall purity (based on CD3<sup>+</sup> expression) of the cells was 95.51 ± 1.23% and 93.13 ± 0.30% for fresh and thawed T cells, respectively. Cell recoveries were 64.68 ± 14.05% and 57.06 ± 6.28% for fresh and thawed cells, respectively. We then further tested the MARS Bar enrichment platform after cell wash/volume reduction using the LOVO Automated Cell Processing System, leading to a higher consistency in CD3<sup>+</sup> purity and increased cell recovery of 68.50 ± 3.54%. Enriched cells were characterized by high viability, ie. 90.5 ± 0.05% for fresh leukopaks when used together with the LOVO device. Altogether, the new approach using the MARS Bar platform allows one to customize and standardize the selection process by using a stand-alone instrument in a clinical manufacturing setting together with cGMP grade reagents and buffers.</div></div>","PeriodicalId":50597,"journal":{"name":"Cytotherapy","volume":"27 4","pages":"Pages 534-543"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1465324924009666","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, adoptive T cell-based immunotherapies have been developed to treat a wide range of hematologic malignancies, including relapsed or refractory non-Hodgkin lymphoma, B-cell leukemia, and multiple myeloma. Most of the commercially approved adoptive T cell therapies are composed of chimeric antigen receptor (CAR)–based T cells, which are a patient's own T cells engineered for recognition of a specific surface antigen, such as CD19 or CD20. Unselected peripheral blood mononuclear cells (PBMCs) have recently been used in several manufacturing protocols, but the vast majority of protocols still use CD4/CD8-selected T cells. The first step in manufacture of these CAR-T products involves simultaneous selection/purification of CD4+ and CD8+ (or CD4/CD8 positive) T cells. The typical approach for selection of CD4/CD8 subsets for clinical manufacturing involves immunomagnetic labeling followed by selection of positively labeled cells using static column-based approaches that are prone to cell clogging events and typically take approximately 2 to 3 hours in a closed system. Here, we used a new column-free, flow-based, fully closed system suitable for clinical cell manufacturing for isolation of CD4/CD8 cells with high purity in a rapid fashion that could accommodate varying capacities without compromising cell recovery. This new approach allows markedly faster cell selection, preserving the quality of the cells that are used for downstream CAR-T cell manufacture. We report the results of our successful validation runs using the new MARS Bar enrichment platform using human apheresis-derived leukocytes for CD4/CD8 isolation in a selection buffer or directly in T cell culture media for subsequent CAR-T cell production. Our data show a rapid and robust CD4/CD8 enrichment with an enrichment time shortened to 1 hour or less. Overall purity (based on CD3+ expression) of the cells was 95.51 ± 1.23% and 93.13 ± 0.30% for fresh and thawed T cells, respectively. Cell recoveries were 64.68 ± 14.05% and 57.06 ± 6.28% for fresh and thawed cells, respectively. We then further tested the MARS Bar enrichment platform after cell wash/volume reduction using the LOVO Automated Cell Processing System, leading to a higher consistency in CD3+ purity and increased cell recovery of 68.50 ± 3.54%. Enriched cells were characterized by high viability, ie. 90.5 ± 0.05% for fresh leukopaks when used together with the LOVO device. Altogether, the new approach using the MARS Bar platform allows one to customize and standardize the selection process by using a stand-alone instrument in a clinical manufacturing setting together with cGMP grade reagents and buffers.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cytotherapy
Cytotherapy 医学-生物工程与应用微生物
CiteScore
6.30
自引率
4.40%
发文量
683
审稿时长
49 days
期刊介绍: The journal brings readers the latest developments in the fast moving field of cellular therapy in man. This includes cell therapy for cancer, immune disorders, inherited diseases, tissue repair and regenerative medicine. The journal covers the science, translational development and treatment with variety of cell types including hematopoietic stem cells, immune cells (dendritic cells, NK, cells, T cells, antigen presenting cells) mesenchymal stromal cells, adipose cells, nerve, muscle, vascular and endothelial cells, and induced pluripotential stem cells. We also welcome manuscripts on subcellular derivatives such as exosomes. A specific focus is on translational research that brings cell therapy to the clinic. Cytotherapy publishes original papers, reviews, position papers editorials, commentaries and letters to the editor. We welcome "Protocols in Cytotherapy" bringing standard operating procedure for production specific cell types for clinical use within the reach of the readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信