Macrophage co-culture promotes cell reprogramming and prevents ferroptosis in aging fibroblasts for neurodegeneration therapy.

IF 4.8 3区 医学 Q1 GENETICS & HEREDITY
Journal of Molecular Medicine-Jmm Pub Date : 2025-03-01 Epub Date: 2025-02-01 DOI:10.1007/s00109-025-02518-z
Lunjie Ma, Fei Fang, Haonan Wang, Ping Zhao, Hongchi Yu, Xiaoheng Liu
{"title":"Macrophage co-culture promotes cell reprogramming and prevents ferroptosis in aging fibroblasts for neurodegeneration therapy.","authors":"Lunjie Ma, Fei Fang, Haonan Wang, Ping Zhao, Hongchi Yu, Xiaoheng Liu","doi":"10.1007/s00109-025-02518-z","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis, a form of programmed cell death associated with lipid peroxidation and iron dependency, plays a critical role in affecting neuronal function in the aging-related neurodegenerative diseases. Macrophages, influenced by these changes, contribute significantly to the progression of aging nerve diseases. Induced neuronal reprogramming is an advanced technology, which can direct convert somatic cells, such as fibroblasts, into neurons, and offers a promising approach for drug screening aimed at correcting ferroptosis and combating aging-related nerve diseases. However, the efficiency of this reprogramming process remains a significant challenge. In this study, we aimed to manipulate macrophage phenotypes to enhance the direct conversion of fibroblasts into neurons. Specifically, we sought to correct ferroptosis through screening natural compounds using aged fibroblasts and utilizing macrophages to promote induced neuronal (iN) reprogramming. Our findings demonstrate that M2 macrophages effectively promote the direct reprogramming of fibroblasts into iNs. In a novel macrophage-fibroblast co-culture system, M2 macrophages facilitate iN reprogramming by reducing fibroblast adhesion forces and promoting asymmetric cell division. Furthermore, we discovered that manipulating matrix stiffness can induce polarization of macrophages towards the M2 phenotype, thereby enhancing fibroblast reprogramming into iNs. To facilitate these findings, we developed a mechano-cue-based drug screening chip, where soft hydrogels induced and maintained the phenotype of M2 macrophages and effectively promoted cell reprogramming. Using a combinatorial approach with 36 such chips, we screened natural compounds for their anti-aging properties, focusing on reversing fibroblast aging and inducing their conversion into neuronal cells. Notably, Vitexin, an apigenin flavone glycoside with a role as a platelet aggregation inhibitor, emerged as a promising candidate to achieve our therapeutic goals. This study highlights the potential of macrophage-mediated modulation of fibroblast reprogramming as a strategy to address ferroptosis-induced neuronal dysfunction in aging-related nerve diseases. KEY MESSAGE: This study highlights the potential of macrophage-mediated modulation of fibroblast reprogramming as a strategy to address ferroptosis-induced neuronal dysfunction in aging-related nerve diseases.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":"301-310"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Medicine-Jmm","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00109-025-02518-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroptosis, a form of programmed cell death associated with lipid peroxidation and iron dependency, plays a critical role in affecting neuronal function in the aging-related neurodegenerative diseases. Macrophages, influenced by these changes, contribute significantly to the progression of aging nerve diseases. Induced neuronal reprogramming is an advanced technology, which can direct convert somatic cells, such as fibroblasts, into neurons, and offers a promising approach for drug screening aimed at correcting ferroptosis and combating aging-related nerve diseases. However, the efficiency of this reprogramming process remains a significant challenge. In this study, we aimed to manipulate macrophage phenotypes to enhance the direct conversion of fibroblasts into neurons. Specifically, we sought to correct ferroptosis through screening natural compounds using aged fibroblasts and utilizing macrophages to promote induced neuronal (iN) reprogramming. Our findings demonstrate that M2 macrophages effectively promote the direct reprogramming of fibroblasts into iNs. In a novel macrophage-fibroblast co-culture system, M2 macrophages facilitate iN reprogramming by reducing fibroblast adhesion forces and promoting asymmetric cell division. Furthermore, we discovered that manipulating matrix stiffness can induce polarization of macrophages towards the M2 phenotype, thereby enhancing fibroblast reprogramming into iNs. To facilitate these findings, we developed a mechano-cue-based drug screening chip, where soft hydrogels induced and maintained the phenotype of M2 macrophages and effectively promoted cell reprogramming. Using a combinatorial approach with 36 such chips, we screened natural compounds for their anti-aging properties, focusing on reversing fibroblast aging and inducing their conversion into neuronal cells. Notably, Vitexin, an apigenin flavone glycoside with a role as a platelet aggregation inhibitor, emerged as a promising candidate to achieve our therapeutic goals. This study highlights the potential of macrophage-mediated modulation of fibroblast reprogramming as a strategy to address ferroptosis-induced neuronal dysfunction in aging-related nerve diseases. KEY MESSAGE: This study highlights the potential of macrophage-mediated modulation of fibroblast reprogramming as a strategy to address ferroptosis-induced neuronal dysfunction in aging-related nerve diseases.

巨噬细胞共培养可促进细胞重编程并防止老化成纤维细胞中的铁蛋白沉积,从而治疗神经变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Medicine-Jmm
Journal of Molecular Medicine-Jmm 医学-医学:研究与实验
CiteScore
9.30
自引率
0.00%
发文量
100
审稿时长
1.3 months
期刊介绍: The Journal of Molecular Medicine publishes original research articles and review articles that range from basic findings in mechanisms of disease pathogenesis to therapy. The focus includes all human diseases, including but not limited to: Aging, angiogenesis, autoimmune diseases as well as other inflammatory diseases, cancer, cardiovascular diseases, development and differentiation, endocrinology, gastrointestinal diseases and hepatology, genetics and epigenetics, hematology, hypoxia research, immunology, infectious diseases, metabolic disorders, neuroscience of diseases, -omics based disease research, regenerative medicine, and stem cell research. Studies solely based on cell lines will not be considered. Studies that are based on model organisms will be considered as long as they are directly relevant to human disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信