myAURA: a personalized health library for epilepsy management via knowledge graph sparsification and visualization.

IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Rion Brattig Correia, Jordan C Rozum, Leonard Cross, Jack Felag, Michael Gallant, Ziqi Guo, Bruce W Herr, Aehong Min, Jon Sanchez-Valle, Deborah Stungis Rocha, Alfonso Valencia, Xuan Wang, Katy Börner, Wendy Miller, Luis M Rocha
{"title":"myAURA: a personalized health library for epilepsy management via knowledge graph sparsification and visualization.","authors":"Rion Brattig Correia, Jordan C Rozum, Leonard Cross, Jack Felag, Michael Gallant, Ziqi Guo, Bruce W Herr, Aehong Min, Jon Sanchez-Valle, Deborah Stungis Rocha, Alfonso Valencia, Xuan Wang, Katy Börner, Wendy Miller, Luis M Rocha","doi":"10.1093/jamia/ocaf012","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Report the development of the patient-centered myAURA application and suite of methods designed to aid epilepsy patients, caregivers, and clinicians in making decisions about self-management and care.</p><p><strong>Materials and methods: </strong>myAURA rests on an unprecedented collection of epilepsy-relevant heterogeneous data resources, such as biomedical databases, social media, and electronic health records (EHRs). We use a patient-centered biomedical dictionary to link the collected data in a multilayer knowledge graph (KG) computed with a generalizable, open-source methodology.</p><p><strong>Results: </strong>Our approach is based on a novel network sparsification method that uses the metric backbone of weighted graphs to discover important edges for inference, recommendation, and visualization. We demonstrate by studying drug-drug interaction from EHRs, extracting epilepsy-focused digital cohorts from social media, and generating a multilayer KG visualization. We also present our patient-centered design and pilot-testing of myAURA, including its user interface.</p><p><strong>Discussion: </strong>The ability to search and explore myAURA's heterogeneous data sources in a single, sparsified, multilayer KG is highly useful for a range of epilepsy studies and stakeholder support.</p><p><strong>Conclusion: </strong>Our stakeholder-driven, scalable approach to integrating traditional and nontraditional data sources enables both clinical discovery and data-powered patient self-management in epilepsy and can be generalized to other chronic conditions.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocaf012","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Report the development of the patient-centered myAURA application and suite of methods designed to aid epilepsy patients, caregivers, and clinicians in making decisions about self-management and care.

Materials and methods: myAURA rests on an unprecedented collection of epilepsy-relevant heterogeneous data resources, such as biomedical databases, social media, and electronic health records (EHRs). We use a patient-centered biomedical dictionary to link the collected data in a multilayer knowledge graph (KG) computed with a generalizable, open-source methodology.

Results: Our approach is based on a novel network sparsification method that uses the metric backbone of weighted graphs to discover important edges for inference, recommendation, and visualization. We demonstrate by studying drug-drug interaction from EHRs, extracting epilepsy-focused digital cohorts from social media, and generating a multilayer KG visualization. We also present our patient-centered design and pilot-testing of myAURA, including its user interface.

Discussion: The ability to search and explore myAURA's heterogeneous data sources in a single, sparsified, multilayer KG is highly useful for a range of epilepsy studies and stakeholder support.

Conclusion: Our stakeholder-driven, scalable approach to integrating traditional and nontraditional data sources enables both clinical discovery and data-powered patient self-management in epilepsy and can be generalized to other chronic conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the American Medical Informatics Association
Journal of the American Medical Informatics Association 医学-计算机:跨学科应用
CiteScore
14.50
自引率
7.80%
发文量
230
审稿时长
3-8 weeks
期刊介绍: JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信