Huizhen Wen , Xingxing Tu , Fulan Luo , Chunyuan Zeng , Chuang Xia , Qian Zhao , Zihong Xian , Zhongzhen Zhou , Jiangping Xu , Haitao Wang
{"title":"A novel PDE4 inhibitor ZX21011 alleviates neuronal apoptosis by decreasing GSK3β-mediated Drp1 Ser616 phosphorylation in cerebral ischemia reperfusion","authors":"Huizhen Wen , Xingxing Tu , Fulan Luo , Chunyuan Zeng , Chuang Xia , Qian Zhao , Zihong Xian , Zhongzhen Zhou , Jiangping Xu , Haitao Wang","doi":"10.1016/j.cbi.2025.111405","DOIUrl":null,"url":null,"abstract":"<div><div>Dynamin-related protein 1 (Drp1) regulates mitochondrial fission and participates in neuronal apoptosis during the pathology of cerebral ischemia. We have previously shown that inhibition of phosphodiesterase-4 (PDE4) protects against neuronal apoptosis in models of ischemic stroke. However, it remains unclear whether PDE4 inhibition affects Drp1-mediated mitochondrial dysfunction and apoptosis under cerebral ischemia conditions. This study aimed to determine whether ZX21011, a novel PDE4 inhibitor synthesized in our laboratory, can act on Drp1 to counteract ischemic brain injury and to elucidate its mechanism of action. We demonstrated that ZX21011 effectively reduced neuronal apoptosis caused by oxygen-glucose deprivation/reoxygenation (OGD/R) in HT22 cells and ameliorated neurological deficits caused by middle cerebral artery occlusion/reperfusion (MCAO/R) in rats. ZX21011 enhanced glycogen synthase kinase-3β (GSK3β) phosphorylation (Ser9), GSK3β(S9A) mutation blocked the protective effects of ZX21011. Simultaneously, ZX21011 reduced the levels of reactive oxygen species (ROS), restored the morphology of mitochondria, and inhibited the phosphorylation of Drp1(Ser616). The Drp1(S616E) mutation blocked the protective effects of ZX21011 on ROS production and mitochondrial morphology function after cerebral ischemia. What's more, co-immunoprecipitation analysis revealed that ZX21011 decreased the binding of GSK3β to Drp1, and GSK3β(S9A) mutation reversed the effects of ZX21011 on Drp1 phosphorylation and cell viability. Moreover, ZX21011 decreased Drp1(Ser616) phosphorylation within the ischemic penumbra of rats following cerebral ischemia/reperfusion. In summary, ZX21011 counteracts ischemic stroke-induced oxidative stress and neuronal death, and its action is related to decreased Drp1 phosphorylation at Ser616. Thus, ZX21011 is a potential compound for the intervention of stroke.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"408 ","pages":"Article 111405"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009279725000353","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamin-related protein 1 (Drp1) regulates mitochondrial fission and participates in neuronal apoptosis during the pathology of cerebral ischemia. We have previously shown that inhibition of phosphodiesterase-4 (PDE4) protects against neuronal apoptosis in models of ischemic stroke. However, it remains unclear whether PDE4 inhibition affects Drp1-mediated mitochondrial dysfunction and apoptosis under cerebral ischemia conditions. This study aimed to determine whether ZX21011, a novel PDE4 inhibitor synthesized in our laboratory, can act on Drp1 to counteract ischemic brain injury and to elucidate its mechanism of action. We demonstrated that ZX21011 effectively reduced neuronal apoptosis caused by oxygen-glucose deprivation/reoxygenation (OGD/R) in HT22 cells and ameliorated neurological deficits caused by middle cerebral artery occlusion/reperfusion (MCAO/R) in rats. ZX21011 enhanced glycogen synthase kinase-3β (GSK3β) phosphorylation (Ser9), GSK3β(S9A) mutation blocked the protective effects of ZX21011. Simultaneously, ZX21011 reduced the levels of reactive oxygen species (ROS), restored the morphology of mitochondria, and inhibited the phosphorylation of Drp1(Ser616). The Drp1(S616E) mutation blocked the protective effects of ZX21011 on ROS production and mitochondrial morphology function after cerebral ischemia. What's more, co-immunoprecipitation analysis revealed that ZX21011 decreased the binding of GSK3β to Drp1, and GSK3β(S9A) mutation reversed the effects of ZX21011 on Drp1 phosphorylation and cell viability. Moreover, ZX21011 decreased Drp1(Ser616) phosphorylation within the ischemic penumbra of rats following cerebral ischemia/reperfusion. In summary, ZX21011 counteracts ischemic stroke-induced oxidative stress and neuronal death, and its action is related to decreased Drp1 phosphorylation at Ser616. Thus, ZX21011 is a potential compound for the intervention of stroke.
期刊介绍:
Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.