The Rac1 homolog CED-10 is a component of the MES-1/SRC-1 pathway for asymmetric division of the Caenorhabditis elegans EMS blastomere.

IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY
Genetics Pub Date : 2025-04-17 DOI:10.1093/genetics/iyaf020
Helen Lamb, McKenzi Fernholz, Małgorzata J Liro, Krista M Myles, Holly Anderson, Lesilee S Rose
{"title":"The Rac1 homolog CED-10 is a component of the MES-1/SRC-1 pathway for asymmetric division of the Caenorhabditis elegans EMS blastomere.","authors":"Helen Lamb, McKenzi Fernholz, Małgorzata J Liro, Krista M Myles, Holly Anderson, Lesilee S Rose","doi":"10.1093/genetics/iyaf020","DOIUrl":null,"url":null,"abstract":"<p><p>Asymmetric cell division is essential for the creation of cell types with different identities and functions. The endomesodermal precursor cell (EMS) of the 4-cell Caenorhabditis elegans embryo undergoes an asymmetric division in response to partially redundant signaling pathways. One pathway involves a Wnt signal from the neighboring P2 cell, while the other pathway is defined by the receptor-like MES-1 transmembrane protein localized at the EMS-P2 cell contact and the cytoplasmic kinase SRC-1. In response to these signals, the EMS nuclear-centrosome complex rotates, so that the spindle forms on the anterior-posterior axis; after division, the daughter cell contacting P2 becomes the endodermal precursor cell. Here, we identify the Rac1 homolog CED-10 as a new component of the MES-1/SRC-1 pathway. Loss of CED-10 affects both spindle positioning and endoderm specification in the EMS cell. SRC-1 dependent phosphorylation at the EMS-P2 contact is reduced. However, the asymmetric division of the P2 cell, which is also MES-1 and SRC-1 dependent, appears normal in ced-10 mutants. These and other results suggest that CED-10 acts upstream of, or at the level of, SRC-1 activity in the EMS cell. In addition, we find that the branched actin regulator ARX-2 is enriched at the EMS-P2 cell contact site, in a CED-10-dependent manner. Loss of ARX-2 results in EMS spindle orientation defects, suggesting that CED-10 acts through branched actin to promote spindle orientation in the EMS cell.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12005263/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf020","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Asymmetric cell division is essential for the creation of cell types with different identities and functions. The endomesodermal precursor cell (EMS) of the 4-cell Caenorhabditis elegans embryo undergoes an asymmetric division in response to partially redundant signaling pathways. One pathway involves a Wnt signal from the neighboring P2 cell, while the other pathway is defined by the receptor-like MES-1 transmembrane protein localized at the EMS-P2 cell contact and the cytoplasmic kinase SRC-1. In response to these signals, the EMS nuclear-centrosome complex rotates, so that the spindle forms on the anterior-posterior axis; after division, the daughter cell contacting P2 becomes the endodermal precursor cell. Here, we identify the Rac1 homolog CED-10 as a new component of the MES-1/SRC-1 pathway. Loss of CED-10 affects both spindle positioning and endoderm specification in the EMS cell. SRC-1 dependent phosphorylation at the EMS-P2 contact is reduced. However, the asymmetric division of the P2 cell, which is also MES-1 and SRC-1 dependent, appears normal in ced-10 mutants. These and other results suggest that CED-10 acts upstream of, or at the level of, SRC-1 activity in the EMS cell. In addition, we find that the branched actin regulator ARX-2 is enriched at the EMS-P2 cell contact site, in a CED-10-dependent manner. Loss of ARX-2 results in EMS spindle orientation defects, suggesting that CED-10 acts through branched actin to promote spindle orientation in the EMS cell.

Rac1 同源物 CED-10 是 elegans EMS 胚泡不对称分裂的 MES-1/SRC-1 通路的一个组成部分。
不对称的细胞分裂对于产生具有不同身份和功能的细胞类型至关重要。四细胞秀丽隐杆线虫胚胎的EMS卵裂球在部分冗余信号通路的响应下发生不对称分裂。一种途径涉及来自邻近P2细胞的Wnt信号,而另一种途径由定位于EMS-P2细胞接触处的受体样MES-1跨膜蛋白和细胞质激酶SRC-1定义。响应这些信号,EMS核-中心体复合体旋转,在前后轴上形成纺锤体;分裂后,与P2接触的子细胞成为内胚层前体细胞。本研究将Rac1同源物CED-10鉴定为MES-1/SRC-1通路的新组分。CED-10的缺失会影响EMS细胞的纺锤定位和内胚层规格。在EMS-P2接触处SRC-1依赖性磷酸化减少。然而,同样依赖于MES-1和SRC-1的P2细胞的不对称分裂在ced-10突变体中表现正常。这些和其他结果表明,CED-10在EMS细胞中作用于SRC-1活性的上游或水平。此外,我们发现分支肌动蛋白调节因子ARX-2在EMS-P2细胞接触位点富集,以CED-10依赖的方式富集。ARX-2缺失导致EMS纺锤体取向缺陷,提示CED-10在EMS细胞中通过支链肌动蛋白促进纺锤体取向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genetics
Genetics GENETICS & HEREDITY-
CiteScore
6.90
自引率
6.10%
发文量
177
审稿时长
1.5 months
期刊介绍: GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work. While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal. The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists. GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信