{"title":"Lasting Impact: Exploring the Brain Mechanisms that Link Traumatic Brain Injury to Parkinson's Disease.","authors":"Samantha Edwards, Frances Corrigan, Lyndsey Collins-Praino","doi":"10.1007/s12035-025-04706-x","DOIUrl":null,"url":null,"abstract":"<p><p>Development of Parkinson's Disease (PD) is linked with a history of traumatic brain injury (TBI), although the mechanisms driving this remain unclear. Of note, many key parallels have been identified between the pathologies of PD and TBI; in particular, PD is characterised by loss of dopaminergic neurons from the substantia nigra (SN), accompanied by broader changes to dopaminergic signalling, disruption of the Locus Coeruleus (LC) and noradrenergic system, and accumulation of aggregated α-synuclein in Lewy Bodies, which spreads in a stereotypical pattern throughout the brain. Widespread disruptions to the dopaminergic and noradrenergic systems, including progressive neuronal loss from the SN and LC, have been observed acutely following injury, some of which have also been identified chronically in TBI patients and preclinical models. Furthermore, changes to α-synuclein expression are also seen both acutely and chronically following injury throughout the brain, although detailed characterisation of these changes and spread of pathology is limited. In this review, we detail the current literature regarding dopaminergic and noradrenergic disruption and α-synuclein pathology following injury, with particular focus on how these changes may predispose individuals to prolonged pathology and progressive neurodegeneration, particularly the development of PD. While it is increasingly clear that TBI is a key risk factor for the development of PD, significant gaps remain in current understanding of neurodegenerative pathology following TBI, particularly chronic manifestations of injury.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"7421-7444"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078371/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-04706-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Development of Parkinson's Disease (PD) is linked with a history of traumatic brain injury (TBI), although the mechanisms driving this remain unclear. Of note, many key parallels have been identified between the pathologies of PD and TBI; in particular, PD is characterised by loss of dopaminergic neurons from the substantia nigra (SN), accompanied by broader changes to dopaminergic signalling, disruption of the Locus Coeruleus (LC) and noradrenergic system, and accumulation of aggregated α-synuclein in Lewy Bodies, which spreads in a stereotypical pattern throughout the brain. Widespread disruptions to the dopaminergic and noradrenergic systems, including progressive neuronal loss from the SN and LC, have been observed acutely following injury, some of which have also been identified chronically in TBI patients and preclinical models. Furthermore, changes to α-synuclein expression are also seen both acutely and chronically following injury throughout the brain, although detailed characterisation of these changes and spread of pathology is limited. In this review, we detail the current literature regarding dopaminergic and noradrenergic disruption and α-synuclein pathology following injury, with particular focus on how these changes may predispose individuals to prolonged pathology and progressive neurodegeneration, particularly the development of PD. While it is increasingly clear that TBI is a key risk factor for the development of PD, significant gaps remain in current understanding of neurodegenerative pathology following TBI, particularly chronic manifestations of injury.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.