A spleen-targeted vaccine for SARS-CoV-2 - Inducting neutralizing antibodies in mice.

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL
Taro Shimizu, Shunji Abe, Yoshino Kawaguchi, Haruka Takata, Hidenori Ando, Tatsuhiro Ishida
{"title":"A spleen-targeted vaccine for SARS-CoV-2 - Inducting neutralizing antibodies in mice.","authors":"Taro Shimizu, Shunji Abe, Yoshino Kawaguchi, Haruka Takata, Hidenori Ando, Tatsuhiro Ishida","doi":"10.1016/j.xphs.2025.01.024","DOIUrl":null,"url":null,"abstract":"<p><p>The development of vaccines against infectious diseases is of the utmost importance to prevent global pandemics such as COVID-19. The application of antigens and adjuvants to efficiently target antigen presenting cells (APCs) is paramount for the development of efficient vaccines. In our previous study, we showed that splenic marginal zone-B (MZ-B) cells are promising APCs in addition to dendritic cells (DCs). In this study we achieved the targeted delivery of sufficient antigen to MZ-B cells by utilizing an intravenous (IV) immunization system we originally developed. This system involves the sequential injection of empty PEGylated liposomes (PEG-Lip) and antigen-containing PEG-Lip within a prescribed interval. Herein, we describe the application of this IV immunization system as a COVID-19 vaccine to induce specific antibodies against SARS-CoV-2. To establish efficacy, SARS-CoV-2 spike proteins were used as an antigen, and α-galactosylceramide (GC) was used as an adjuvant in this study. Three days after priming with empty PEG-Lip, we injected PEG-Lip containing spike protein and α-GC. Our IV immunization system successfully induced higher levels of anti-spike antibodies when spike protein derived from HEK-293, but not E. coli., was injected into mice. The levels were less produced using conventional immunization via subcutaneous (s.c.) injections of complete Freund's adjuvant without priming. Interestingly, a lower dose (0.2 µg) of spike protein antigen encapsulated into PEG-Lip induced a higher level of anti-spike antibodies than that produced using a significantly higher dose (5 µg). The induced anti-spike antibodies inhibited the interaction between the receptor binding domain of the spike protein and the angiotensin-converting enzyme 2. This indicates that the induced antibodies tend to neutralize SARS-CoV-2. Collectively, the specific delivery of spike proteins to spleen, probably MZ-B cells, via nano-carriers could be a promising approach for the development of global pandemic vaccines that require only minimum dosages of antigen.</p>","PeriodicalId":16741,"journal":{"name":"Journal of pharmaceutical sciences","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xphs.2025.01.024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of vaccines against infectious diseases is of the utmost importance to prevent global pandemics such as COVID-19. The application of antigens and adjuvants to efficiently target antigen presenting cells (APCs) is paramount for the development of efficient vaccines. In our previous study, we showed that splenic marginal zone-B (MZ-B) cells are promising APCs in addition to dendritic cells (DCs). In this study we achieved the targeted delivery of sufficient antigen to MZ-B cells by utilizing an intravenous (IV) immunization system we originally developed. This system involves the sequential injection of empty PEGylated liposomes (PEG-Lip) and antigen-containing PEG-Lip within a prescribed interval. Herein, we describe the application of this IV immunization system as a COVID-19 vaccine to induce specific antibodies against SARS-CoV-2. To establish efficacy, SARS-CoV-2 spike proteins were used as an antigen, and α-galactosylceramide (GC) was used as an adjuvant in this study. Three days after priming with empty PEG-Lip, we injected PEG-Lip containing spike protein and α-GC. Our IV immunization system successfully induced higher levels of anti-spike antibodies when spike protein derived from HEK-293, but not E. coli., was injected into mice. The levels were less produced using conventional immunization via subcutaneous (s.c.) injections of complete Freund's adjuvant without priming. Interestingly, a lower dose (0.2 µg) of spike protein antigen encapsulated into PEG-Lip induced a higher level of anti-spike antibodies than that produced using a significantly higher dose (5 µg). The induced anti-spike antibodies inhibited the interaction between the receptor binding domain of the spike protein and the angiotensin-converting enzyme 2. This indicates that the induced antibodies tend to neutralize SARS-CoV-2. Collectively, the specific delivery of spike proteins to spleen, probably MZ-B cells, via nano-carriers could be a promising approach for the development of global pandemic vaccines that require only minimum dosages of antigen.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
13.20%
发文量
367
审稿时长
33 days
期刊介绍: The Journal of Pharmaceutical Sciences will publish original research papers, original research notes, invited topical reviews (including Minireviews), and editorial commentary and news. The area of focus shall be concepts in basic pharmaceutical science and such topics as chemical processing of pharmaceuticals, including crystallization, lyophilization, chemical stability of drugs, pharmacokinetics, biopharmaceutics, pharmacodynamics, pro-drug developments, metabolic disposition of bioactive agents, dosage form design, protein-peptide chemistry and biotechnology specifically as these relate to pharmaceutical technology, and targeted drug delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信