Timing of high-definition transcranial direct current stimulation to the nondominant primary motor cortex fails to modulate cortical hemodynamic activity and improve motor sequence learning.
{"title":"Timing of high-definition transcranial direct current stimulation to the nondominant primary motor cortex fails to modulate cortical hemodynamic activity and improve motor sequence learning.","authors":"Minxia Jin, Xiaomeng Xu, Ziwei Zhang, Weili Xia, Xiaoyu Lou, Zhongfei Bai","doi":"10.1186/s12984-025-01546-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The relative timing of transcranial direct current stimulation (tDCS) and motor practice holds potential importance in modulating cortical activity and facilitating behavioral performance.</p><p><strong>Method: </strong>A single-blind, randomized, cross-over experiment was conducted. Twenty healthy participants engaged in a sequential finger-tapping task with their left hand. High-definition anodal tDCS (1 mA, 20 min) was administered over the right primary motor cortex (M1) either during (concurrent-tDCS) or before the motor practice (prior-tDCS). A sham tDCS condition was also employed. The three tDCS conditions were separated by one-week intervals. Cortical hemodynamic activity in the prefrontal cortex (PFC), supplementary motor area (SMA), and M1 measured by functional near-infrared spectroscopy, as well as motor performance assessed by number of correct sequences were examined before (T1), immediately after (T2), and 24 h after the practice (T3). The data was subjected to a two-way repeated measures analysis of variance.</p><p><strong>Results: </strong>No significant interaction or main effect of condition were found on motor performance. Regarding cortical hemodynamic activity, none of the regions of interest or channels exhibited a significant interaction effect or main effect of condition. No significant correlation between cortical activity and motor performance was found.</p><p><strong>Conclusion: </strong>Our results cannot support the timing effect of single-session anodal tDCS on facilitating brain activity or improving motor performance. These results contribute to the growing body of evidence challenging the efficacy of a single session of exogenous stimulation as an adjunct to motor practice for promoting motor acquisition. Further research should explore alternative tDCS parameters, multiple sessions and various age groups.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":"22 1","pages":"17"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783929/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-025-01546-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The relative timing of transcranial direct current stimulation (tDCS) and motor practice holds potential importance in modulating cortical activity and facilitating behavioral performance.
Method: A single-blind, randomized, cross-over experiment was conducted. Twenty healthy participants engaged in a sequential finger-tapping task with their left hand. High-definition anodal tDCS (1 mA, 20 min) was administered over the right primary motor cortex (M1) either during (concurrent-tDCS) or before the motor practice (prior-tDCS). A sham tDCS condition was also employed. The three tDCS conditions were separated by one-week intervals. Cortical hemodynamic activity in the prefrontal cortex (PFC), supplementary motor area (SMA), and M1 measured by functional near-infrared spectroscopy, as well as motor performance assessed by number of correct sequences were examined before (T1), immediately after (T2), and 24 h after the practice (T3). The data was subjected to a two-way repeated measures analysis of variance.
Results: No significant interaction or main effect of condition were found on motor performance. Regarding cortical hemodynamic activity, none of the regions of interest or channels exhibited a significant interaction effect or main effect of condition. No significant correlation between cortical activity and motor performance was found.
Conclusion: Our results cannot support the timing effect of single-session anodal tDCS on facilitating brain activity or improving motor performance. These results contribute to the growing body of evidence challenging the efficacy of a single session of exogenous stimulation as an adjunct to motor practice for promoting motor acquisition. Further research should explore alternative tDCS parameters, multiple sessions and various age groups.
期刊介绍:
Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.