Semantic-driven synthesis of histological images with controllable cellular distributions

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Alen Shahini , Alessandro Gambella , Filippo Molinari , Massimo Salvi
{"title":"Semantic-driven synthesis of histological images with controllable cellular distributions","authors":"Alen Shahini ,&nbsp;Alessandro Gambella ,&nbsp;Filippo Molinari ,&nbsp;Massimo Salvi","doi":"10.1016/j.cmpb.2025.108621","DOIUrl":null,"url":null,"abstract":"<div><div>Digital pathology relies heavily on large, well-annotated datasets for training computational methods, but generating such datasets remains challenging due to the expertise required and inter-operator variability. We present SENSE (SEmantic Nuclear Synthesis Emulator), a novel framework for synthesizing realistic histological images with precise control over cellular distributions. Our approach introduces three key innovations: (1) A statistical modeling system that captures class-specific nuclear characteristics from expert annotations, enabling generation of diverse yet biologically plausible semantic content; (2) A hybrid ViT-Pix2Pix GAN architecture that effectively translates semantic maps into high-fidelity histological images; and (3) A modular design allowing independent control of cellular properties including type, count, and spatial distribution. Evaluation on the MoNuSAC dataset demonstrates that SENSE generates images matching the quality of real samples (MANIQA: 0.52 ± 0.03 vs 0.52 ± 0.04) while maintaining expert-verified biological plausibility. In segmentation tasks, augmenting training data with SENSE-generated images improved overall performance (DSC from 79.71 to 84.86) and dramatically enhanced detection of rare cell types, with neutrophil segmentation accuracy increasing from 40.18 to 78.71 DSC. This framework enables targeted dataset enhancement for computational pathology applications while offering new possibilities for educational and training scenarios requiring controlled tissue presentations.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"261 ","pages":"Article 108621"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725000380","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Digital pathology relies heavily on large, well-annotated datasets for training computational methods, but generating such datasets remains challenging due to the expertise required and inter-operator variability. We present SENSE (SEmantic Nuclear Synthesis Emulator), a novel framework for synthesizing realistic histological images with precise control over cellular distributions. Our approach introduces three key innovations: (1) A statistical modeling system that captures class-specific nuclear characteristics from expert annotations, enabling generation of diverse yet biologically plausible semantic content; (2) A hybrid ViT-Pix2Pix GAN architecture that effectively translates semantic maps into high-fidelity histological images; and (3) A modular design allowing independent control of cellular properties including type, count, and spatial distribution. Evaluation on the MoNuSAC dataset demonstrates that SENSE generates images matching the quality of real samples (MANIQA: 0.52 ± 0.03 vs 0.52 ± 0.04) while maintaining expert-verified biological plausibility. In segmentation tasks, augmenting training data with SENSE-generated images improved overall performance (DSC from 79.71 to 84.86) and dramatically enhanced detection of rare cell types, with neutrophil segmentation accuracy increasing from 40.18 to 78.71 DSC. This framework enables targeted dataset enhancement for computational pathology applications while offering new possibilities for educational and training scenarios requiring controlled tissue presentations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信