{"title":"Semantic-driven synthesis of histological images with controllable cellular distributions","authors":"Alen Shahini , Alessandro Gambella , Filippo Molinari , Massimo Salvi","doi":"10.1016/j.cmpb.2025.108621","DOIUrl":null,"url":null,"abstract":"<div><div>Digital pathology relies heavily on large, well-annotated datasets for training computational methods, but generating such datasets remains challenging due to the expertise required and inter-operator variability. We present SENSE (SEmantic Nuclear Synthesis Emulator), a novel framework for synthesizing realistic histological images with precise control over cellular distributions. Our approach introduces three key innovations: (1) A statistical modeling system that captures class-specific nuclear characteristics from expert annotations, enabling generation of diverse yet biologically plausible semantic content; (2) A hybrid ViT-Pix2Pix GAN architecture that effectively translates semantic maps into high-fidelity histological images; and (3) A modular design allowing independent control of cellular properties including type, count, and spatial distribution. Evaluation on the MoNuSAC dataset demonstrates that SENSE generates images matching the quality of real samples (MANIQA: 0.52 ± 0.03 vs 0.52 ± 0.04) while maintaining expert-verified biological plausibility. In segmentation tasks, augmenting training data with SENSE-generated images improved overall performance (DSC from 79.71 to 84.86) and dramatically enhanced detection of rare cell types, with neutrophil segmentation accuracy increasing from 40.18 to 78.71 DSC. This framework enables targeted dataset enhancement for computational pathology applications while offering new possibilities for educational and training scenarios requiring controlled tissue presentations.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"261 ","pages":"Article 108621"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725000380","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Digital pathology relies heavily on large, well-annotated datasets for training computational methods, but generating such datasets remains challenging due to the expertise required and inter-operator variability. We present SENSE (SEmantic Nuclear Synthesis Emulator), a novel framework for synthesizing realistic histological images with precise control over cellular distributions. Our approach introduces three key innovations: (1) A statistical modeling system that captures class-specific nuclear characteristics from expert annotations, enabling generation of diverse yet biologically plausible semantic content; (2) A hybrid ViT-Pix2Pix GAN architecture that effectively translates semantic maps into high-fidelity histological images; and (3) A modular design allowing independent control of cellular properties including type, count, and spatial distribution. Evaluation on the MoNuSAC dataset demonstrates that SENSE generates images matching the quality of real samples (MANIQA: 0.52 ± 0.03 vs 0.52 ± 0.04) while maintaining expert-verified biological plausibility. In segmentation tasks, augmenting training data with SENSE-generated images improved overall performance (DSC from 79.71 to 84.86) and dramatically enhanced detection of rare cell types, with neutrophil segmentation accuracy increasing from 40.18 to 78.71 DSC. This framework enables targeted dataset enhancement for computational pathology applications while offering new possibilities for educational and training scenarios requiring controlled tissue presentations.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.