PMFSNet: Polarized multi-scale feature self-attention network for lightweight medical image segmentation

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jiahui Zhong , Wenhong Tian , Yuanlun Xie , Zhijia Liu , Jie Ou , Taoran Tian , Lei Zhang
{"title":"PMFSNet: Polarized multi-scale feature self-attention network for lightweight medical image segmentation","authors":"Jiahui Zhong ,&nbsp;Wenhong Tian ,&nbsp;Yuanlun Xie ,&nbsp;Zhijia Liu ,&nbsp;Jie Ou ,&nbsp;Taoran Tian ,&nbsp;Lei Zhang","doi":"10.1016/j.cmpb.2025.108611","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and objectives:</h3><div>Current state-of-the-art medical image segmentation methods prioritize precision but often at the expense of increased computational demands and larger model sizes. Applying these large-scale models to the relatively limited scale of medical image datasets tends to induce redundant computation, complicating the process without the necessary benefits. These approaches increase complexity and pose challenges for integrating and deploying lightweight models on edge devices. For instance, recent transformer-based models have excelled in 2D and 3D medical image segmentation due to their extensive receptive fields and high parameter count. However, their effectiveness comes with the risk of overfitting when applied to small datasets. It often neglects the vital inductive biases of Convolutional Neural Networks (CNNs), essential for local feature representation.</div></div><div><h3>Methods:</h3><div>In this work, we propose PMFSNet, a novel medical imaging segmentation model that effectively balances global and local feature processing while avoiding the computational redundancy typical of larger models. PMFSNet streamlines the UNet-based hierarchical structure and simplifies the self-attention mechanism’s computational complexity, making it suitable for lightweight applications. It incorporates a plug-and-play PMFS block, a multi-scale feature enhancement module based on attention mechanisms, to capture long-term dependencies.</div></div><div><h3>Results:</h3><div>The extensive comprehensive results demonstrate that our method achieves superior performance in various segmentation tasks on different data scales even with fewer than a million parameters. Results reveal that our PMFSNet achieves IoU of 84.68%, 82.02%, 78.82%, and 76.48% on public datasets of 3D CBCT Tooth, ovarian tumors ultrasound (MMOTU), skin lesions dermoscopy (ISIC 2018), and gastrointestinal polyp (Kvasir SEG), and yields DSC of 78.29%, 77.45%, and 78.04% on three retinal vessel segmentation datasets, DRIVE, STARE, and CHASE-DB1, respectively.</div></div><div><h3>Conclusion:</h3><div>Our proposed model exhibits competitive performance across various datasets, accomplishing this with significantly fewer model parameters and inference time, demonstrating its value in model integration and deployment. It strikes an optimal compromise between efficiency and performance and can be a highly efficient solution for medical image analysis in resource-constrained clinical environments. The source code is available at <span><span>https://github.com/yykzjh/PMFSNet</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"261 ","pages":"Article 108611"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725000288","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objectives:

Current state-of-the-art medical image segmentation methods prioritize precision but often at the expense of increased computational demands and larger model sizes. Applying these large-scale models to the relatively limited scale of medical image datasets tends to induce redundant computation, complicating the process without the necessary benefits. These approaches increase complexity and pose challenges for integrating and deploying lightweight models on edge devices. For instance, recent transformer-based models have excelled in 2D and 3D medical image segmentation due to their extensive receptive fields and high parameter count. However, their effectiveness comes with the risk of overfitting when applied to small datasets. It often neglects the vital inductive biases of Convolutional Neural Networks (CNNs), essential for local feature representation.

Methods:

In this work, we propose PMFSNet, a novel medical imaging segmentation model that effectively balances global and local feature processing while avoiding the computational redundancy typical of larger models. PMFSNet streamlines the UNet-based hierarchical structure and simplifies the self-attention mechanism’s computational complexity, making it suitable for lightweight applications. It incorporates a plug-and-play PMFS block, a multi-scale feature enhancement module based on attention mechanisms, to capture long-term dependencies.

Results:

The extensive comprehensive results demonstrate that our method achieves superior performance in various segmentation tasks on different data scales even with fewer than a million parameters. Results reveal that our PMFSNet achieves IoU of 84.68%, 82.02%, 78.82%, and 76.48% on public datasets of 3D CBCT Tooth, ovarian tumors ultrasound (MMOTU), skin lesions dermoscopy (ISIC 2018), and gastrointestinal polyp (Kvasir SEG), and yields DSC of 78.29%, 77.45%, and 78.04% on three retinal vessel segmentation datasets, DRIVE, STARE, and CHASE-DB1, respectively.

Conclusion:

Our proposed model exhibits competitive performance across various datasets, accomplishing this with significantly fewer model parameters and inference time, demonstrating its value in model integration and deployment. It strikes an optimal compromise between efficiency and performance and can be a highly efficient solution for medical image analysis in resource-constrained clinical environments. The source code is available at https://github.com/yykzjh/PMFSNet.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信