Exercise Training After Myocardial Infarction Enhances Endothelial Progenitor Cells Function via NRG-1 Signaling.

IF 3.4 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Cardiovascular Toxicology Pub Date : 2025-03-01 Epub Date: 2025-02-01 DOI:10.1007/s12012-025-09967-5
Huai Huang, Guoqiang Huang, Ruojun Li, Liqin Wei, Zhu Yuan, Weiqiang Huang
{"title":"Exercise Training After Myocardial Infarction Enhances Endothelial Progenitor Cells Function via NRG-1 Signaling.","authors":"Huai Huang, Guoqiang Huang, Ruojun Li, Liqin Wei, Zhu Yuan, Weiqiang Huang","doi":"10.1007/s12012-025-09967-5","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular regeneration after myocardial infarction (MI) is essential to improve myocardial ischemia, delay post-infarction ventricular remodeling, and improve the long-term prognosis of MI. Endothelial progenitor cells (EPCs) play important roles in the functional repair and homeostatic maintenance of the vascular endothelium. Exercise training stimulates EPC mobilization and increases the number of circulating EPCs, which has beneficial effects on the restoration of vascular integrity and hemodynamic reconstitution. After post-MI exercise training, cardiac function, the myocardial infarct area, and capillary density in the peri-infarct zone were measured. Bone marrow-derived EPCs were isolated from mice to measure the proliferation, migration, and in vitro angiogenesis of EPCs after myocardial infarction exercise. The expression of NRG-1/ErbB4 signaling factor and related proteins in downstream PI3K/AKT signaling pathway were detected, and the level of autocrine NRG-1 in EPCs was detected. Post-MI resistance training, aerobic exercise training, and combined exercise training increased EPC mobilization and proliferation, migration, and tube-forming capacity, promoted myocardial vascular regeneration, improved cardiac function, and reduced infarct size. Exercise training upregulated NRG-1 expression in EPCs, and NRG-1/ErbB4 signaling activated the downstream PI3K/Akt signaling pathway. Moreover, EPCs may have a positive feedback autocrine loop with NRG-1 to improve the function of EPCs and promote vascular repair and regeneration in mice with MI. Exercise training after MI promotes the function of bone marrow-derived EPCs through NRG-1/ErbB4/PI3K/AKT signaling, thus exerting a role in angiogenesis.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"411-426"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12012-025-09967-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Vascular regeneration after myocardial infarction (MI) is essential to improve myocardial ischemia, delay post-infarction ventricular remodeling, and improve the long-term prognosis of MI. Endothelial progenitor cells (EPCs) play important roles in the functional repair and homeostatic maintenance of the vascular endothelium. Exercise training stimulates EPC mobilization and increases the number of circulating EPCs, which has beneficial effects on the restoration of vascular integrity and hemodynamic reconstitution. After post-MI exercise training, cardiac function, the myocardial infarct area, and capillary density in the peri-infarct zone were measured. Bone marrow-derived EPCs were isolated from mice to measure the proliferation, migration, and in vitro angiogenesis of EPCs after myocardial infarction exercise. The expression of NRG-1/ErbB4 signaling factor and related proteins in downstream PI3K/AKT signaling pathway were detected, and the level of autocrine NRG-1 in EPCs was detected. Post-MI resistance training, aerobic exercise training, and combined exercise training increased EPC mobilization and proliferation, migration, and tube-forming capacity, promoted myocardial vascular regeneration, improved cardiac function, and reduced infarct size. Exercise training upregulated NRG-1 expression in EPCs, and NRG-1/ErbB4 signaling activated the downstream PI3K/Akt signaling pathway. Moreover, EPCs may have a positive feedback autocrine loop with NRG-1 to improve the function of EPCs and promote vascular repair and regeneration in mice with MI. Exercise training after MI promotes the function of bone marrow-derived EPCs through NRG-1/ErbB4/PI3K/AKT signaling, thus exerting a role in angiogenesis.

心肌梗死后运动训练通过NRG-1信号增强内皮祖细胞功能
心肌梗死后血管再生对于改善心肌缺血、延缓梗死后心室重构、改善心肌梗死远期预后至关重要,内皮祖细胞(Endothelial progenitor cells, EPCs)在血管内皮的功能修复和稳态维持中起着重要作用。运动训练刺激EPCs的动员,增加循环EPCs的数量,对血管完整性的恢复和血流动力学重构具有有益的作用。心肌梗死后运动训练后,测量心功能、心肌梗死面积和梗死周围区毛细血管密度。从小鼠中分离骨髓源性EPCs,测定心肌梗死运动后EPCs的增殖、迁移和体外血管生成情况。检测下游PI3K/AKT信号通路中NRG-1/ErbB4信号因子及相关蛋白的表达,检测EPCs中自分泌NRG-1水平。心肌梗死后阻力训练、有氧运动训练和联合运动训练增加了EPC的动员和增殖、迁移和成管能力,促进了心肌血管再生,改善了心功能,缩小了梗死面积。运动训练上调EPCs中NRG-1的表达,NRG-1/ErbB4信号激活下游PI3K/Akt信号通路。心肌梗死后的运动训练通过NRG-1/ErbB4/PI3K/AKT信号通路促进骨髓源性EPCs的功能,从而在血管生成中发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular Toxicology
Cardiovascular Toxicology 医学-毒理学
CiteScore
6.60
自引率
3.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: Cardiovascular Toxicology is the only journal dedicated to publishing contemporary issues, timely reviews, and experimental and clinical data on toxicological aspects of cardiovascular disease. CT publishes papers that will elucidate the effects, molecular mechanisms, and signaling pathways of environmental toxicants on the cardiovascular system. Also covered are the detrimental effects of new cardiovascular drugs, and cardiovascular effects of non-cardiovascular drugs, anti-cancer chemotherapy, and gene therapy. In addition, Cardiovascular Toxicology reports safety and toxicological data on new cardiovascular and non-cardiovascular drugs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信