{"title":"In Situ formed Organic Sodium Salt/rGO Nanocomposite as Anode Material for Sodium Ion Batteries","authors":"Qianwen Xue, Yuansheng Luo, Xiaoxue Tu, Haoyu Yin, Jingfu Chen, Fei Wu, Cheng Zhong, Linna Zhu","doi":"10.1002/cphc.202400909","DOIUrl":null,"url":null,"abstract":"<p>Sodium-ion batteries (SIBs) are expected to be the next-generation large-scale energy storage technology. Organic anode materials are potential for efficient SIBs because they are not sensitive to the size of metal ions. Yet they still suffer from shortcomings such as low electrical conductivity, and solubility in electrolyte. Formation of nanocomposite with carbon materials is an efficient way to address these issues. Herein, we design a thiophene-based carboxylate compound STT, and the STT@rGO nanocomposite is also in situ formed as anode material for SIBs. The reduced graphene oxide (rGO) could improve conductivity and decrease the solubility of the anode material. Compared to the pristine STT electrode, STT@rGO delivers a reversible specific capacity of 178 mAh g<sup>−1</sup>, with a capacity retention rate of 86 % after 1000 cycles. Moreover, full batteries are successfully assembled using the nanocomposite anode and the commercial cathode Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>, manifesting the potential applications of the nanocomposite as organic electrode materials.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":"26 8","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cphc.202400909","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium-ion batteries (SIBs) are expected to be the next-generation large-scale energy storage technology. Organic anode materials are potential for efficient SIBs because they are not sensitive to the size of metal ions. Yet they still suffer from shortcomings such as low electrical conductivity, and solubility in electrolyte. Formation of nanocomposite with carbon materials is an efficient way to address these issues. Herein, we design a thiophene-based carboxylate compound STT, and the STT@rGO nanocomposite is also in situ formed as anode material for SIBs. The reduced graphene oxide (rGO) could improve conductivity and decrease the solubility of the anode material. Compared to the pristine STT electrode, STT@rGO delivers a reversible specific capacity of 178 mAh g−1, with a capacity retention rate of 86 % after 1000 cycles. Moreover, full batteries are successfully assembled using the nanocomposite anode and the commercial cathode Na3V2(PO4)3, manifesting the potential applications of the nanocomposite as organic electrode materials.
钠离子电池(sib)有望成为下一代大规模储能技术。由于有机负极材料对金属离子的大小不敏感,因此有潜力成为高效sib。然而,它们仍然存在诸如低导电性和在电解质中的溶解度等缺点。碳纳米复合材料的形成是解决这些问题的有效途径。在此,我们设计了一种噻吩基羧酸盐化合物STT,并原位形成STT@rGO纳米复合材料作为sib的阳极材料。还原氧化石墨烯(rGO)可以提高阳极材料的电导率,降低其溶解度。与原始STT电极相比,STT@rGO提供了178 mAh g-1的可逆比容量,在1000次循环后容量保持率为86%。此外,使用纳米复合材料阳极和商用阴极Na3V2(PO4)3成功组装了完整的电池,显示了纳米复合材料作为有机电极材料的潜在应用。
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.