In Situ formed Organic Sodium Salt/rGO Nanocomposite as Anode Material for Sodium Ion Batteries.

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Qianwen Xue, Yuansheng Luo, Xiaoxue Tu, Haoyu Yin, Jingfu Chen, Fei Wu, Cheng Zhong, Linna Zhu
{"title":"In Situ formed Organic Sodium Salt/rGO Nanocomposite as Anode Material for Sodium Ion Batteries.","authors":"Qianwen Xue, Yuansheng Luo, Xiaoxue Tu, Haoyu Yin, Jingfu Chen, Fei Wu, Cheng Zhong, Linna Zhu","doi":"10.1002/cphc.202400909","DOIUrl":null,"url":null,"abstract":"<p><p>Sodium-ion batteries (SIBs) are expected to be the next-generation large-scale energy storage technology. Organic anode materials are potential for efficient SIBs because they are not sensitive to the size of metal ions. Yet they still suffer from shortcomings such as low electrical conductivity, and solubility in electrolyte. Formation of nanocomposite with carbon materials is an efficient way to address these issues. Herein, we design a thiophene-based carboxylate compound STT, and the STT@rGO nanocomposite is also in situ formed as anode material for SIBs. The reduced graphene oxide (rGO) could improve conductivity and decrease the solubility of the anode material. Compared to the pristine STT electrode, STT@rGO delivers a reversible specific capacity of 178 mAh g<sup>-1</sup>, with a capacity retention rate of 86 % after 1000 cycles. Moreover, full batteries are successfully assembled using the nanocomposite anode and the commercial cathode Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>, manifesting the potential applications of the nanocomposite as organic electrode materials.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400909"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400909","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium-ion batteries (SIBs) are expected to be the next-generation large-scale energy storage technology. Organic anode materials are potential for efficient SIBs because they are not sensitive to the size of metal ions. Yet they still suffer from shortcomings such as low electrical conductivity, and solubility in electrolyte. Formation of nanocomposite with carbon materials is an efficient way to address these issues. Herein, we design a thiophene-based carboxylate compound STT, and the STT@rGO nanocomposite is also in situ formed as anode material for SIBs. The reduced graphene oxide (rGO) could improve conductivity and decrease the solubility of the anode material. Compared to the pristine STT electrode, STT@rGO delivers a reversible specific capacity of 178 mAh g-1, with a capacity retention rate of 86 % after 1000 cycles. Moreover, full batteries are successfully assembled using the nanocomposite anode and the commercial cathode Na3V2(PO4)3, manifesting the potential applications of the nanocomposite as organic electrode materials.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信