Development and validation of a prognostic prediction model for elderly gastric cancer patients based on oxidative stress biochemical markers.

IF 3.4 2区 医学 Q2 ONCOLOGY
Xing-Qi Zhang, Ze-Ning Huang, Ju Wu, Chang-Yue Zheng, Xiao-Dong Liu, Ying-Qi Huang, Qi-Yue Chen, Ping Li, Jian-Wei Xie, Chao-Hui Zheng, Jian-Xian Lin, Yan-Bing Zhou, Chang-Ming Huang
{"title":"Development and validation of a prognostic prediction model for elderly gastric cancer patients based on oxidative stress biochemical markers.","authors":"Xing-Qi Zhang, Ze-Ning Huang, Ju Wu, Chang-Yue Zheng, Xiao-Dong Liu, Ying-Qi Huang, Qi-Yue Chen, Ping Li, Jian-Wei Xie, Chao-Hui Zheng, Jian-Xian Lin, Yan-Bing Zhou, Chang-Ming Huang","doi":"10.1186/s12885-025-13545-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The potential of the application of artificial intelligence and biochemical markers of oxidative stress to predict the prognosis of older patients with gastric cancer (GC) remains unclear.</p><p><strong>Methods: </strong>This retrospective multicenter study included consecutive patients with GC aged ≥ 65 years treated between January 2012 and April 2018. The patients were allocated into three cohorts (training, internal, and external validation). The GC-Integrated Oxidative Stress Score (GIOSS) was developed using Cox regression to correlate biochemical markers with patient prognosis. Predictive models for five-year overall survival (OS) were constructed using random forest (RF), decision tree (DT), and support vector machine (SVM) methods, and validated using area under the curve (AUC) and calibration plots. The SHapley Additive exPlanations (SHAP) method was used for model interpretation.</p><p><strong>Results: </strong>This study included a total of 1,859 older patients. The results demonstrated that a low GIOSS was a predictor of poor prognosis. RF was the most efficient method, with AUCs of 0.999, 0.869, and 0.796 in the training, internal validation, and external validation sets, respectively. The DT and SVM models showed low AUC values. Calibration and decision curve analyses demonstrated the considerable clinical usefulness of the RF model. The SHAP results identified pN, pT, perineural invasion, tumor size, and GIOSS as key predictive features. An online web calculator was constructed based on the best model.</p><p><strong>Conclusions: </strong>Incorporating the GIOSS, the RF model effectively predicts postoperative OS in older patients with GC and is a robust prognostic tool. Our findings emphasize the importance of oxidative stress in cancer prognosis and provide a pathway for improved management of GC.</p><p><strong>Trial registration: </strong>Retrospectively registered at ClinicalTrials.gov (trial registration number: NCT06208046, date of registration: 2024-05-01).</p>","PeriodicalId":9131,"journal":{"name":"BMC Cancer","volume":"25 1","pages":"188"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12885-025-13545-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The potential of the application of artificial intelligence and biochemical markers of oxidative stress to predict the prognosis of older patients with gastric cancer (GC) remains unclear.

Methods: This retrospective multicenter study included consecutive patients with GC aged ≥ 65 years treated between January 2012 and April 2018. The patients were allocated into three cohorts (training, internal, and external validation). The GC-Integrated Oxidative Stress Score (GIOSS) was developed using Cox regression to correlate biochemical markers with patient prognosis. Predictive models for five-year overall survival (OS) were constructed using random forest (RF), decision tree (DT), and support vector machine (SVM) methods, and validated using area under the curve (AUC) and calibration plots. The SHapley Additive exPlanations (SHAP) method was used for model interpretation.

Results: This study included a total of 1,859 older patients. The results demonstrated that a low GIOSS was a predictor of poor prognosis. RF was the most efficient method, with AUCs of 0.999, 0.869, and 0.796 in the training, internal validation, and external validation sets, respectively. The DT and SVM models showed low AUC values. Calibration and decision curve analyses demonstrated the considerable clinical usefulness of the RF model. The SHAP results identified pN, pT, perineural invasion, tumor size, and GIOSS as key predictive features. An online web calculator was constructed based on the best model.

Conclusions: Incorporating the GIOSS, the RF model effectively predicts postoperative OS in older patients with GC and is a robust prognostic tool. Our findings emphasize the importance of oxidative stress in cancer prognosis and provide a pathway for improved management of GC.

Trial registration: Retrospectively registered at ClinicalTrials.gov (trial registration number: NCT06208046, date of registration: 2024-05-01).

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Cancer
BMC Cancer 医学-肿瘤学
CiteScore
6.00
自引率
2.60%
发文量
1204
审稿时长
6.8 months
期刊介绍: BMC Cancer is an open access, peer-reviewed journal that considers articles on all aspects of cancer research, including the pathophysiology, prevention, diagnosis and treatment of cancers. The journal welcomes submissions concerning molecular and cellular biology, genetics, epidemiology, and clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信