Jia Tian, Ziyu Gao, Minghao Li, Ergude Bao, Jin Zhao
{"title":"Accurate assembly of full-length consensus for viral quasispecies.","authors":"Jia Tian, Ziyu Gao, Minghao Li, Ergude Bao, Jin Zhao","doi":"10.1186/s12859-025-06045-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Viruses can inhabit their hosts in the form of an ensemble of various mutant strains. Reconstructing a robust consensus representation for these diverse mutant strains is essential for recognizing the genetic variations among strains and delving into aspects like virulence, pathogenesis, and selecting therapies. Virus genomes are typically small, often composed of only a few thousand to several hundred thousand nucleotides. While constructing a high-quality consensus of virus strains might seem feasible, most current assemblers only generated fragmented contigs. It's important to emphasize the significance of assembling a single full-length consensus contig, as it's vital for identifying genetic diversity and estimating strain abundance accurately.</p><p><strong>Results: </strong>In this paper, we developed FC-Virus, a de novo genome assembly strategy specifically targeting highly diverse viral populations. FC-Virus first identifies the k-mers that are common across most viral strains, and then uses these k-mers as a backbone to build a full-length consensus sequence covering the entire genome. We benchmark FC-Virus against state-of-the-art genome assemblers.</p><p><strong>Conclusion: </strong>Experimental results confirm that FC-Virus can construct a single, accurate full-length consensus, whereas other assemblers only manage to produce fragmented contigs. FC-Virus is freely available at https://github.com/qdu-bioinfo/FC-Virus.git .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"36"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787740/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06045-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Viruses can inhabit their hosts in the form of an ensemble of various mutant strains. Reconstructing a robust consensus representation for these diverse mutant strains is essential for recognizing the genetic variations among strains and delving into aspects like virulence, pathogenesis, and selecting therapies. Virus genomes are typically small, often composed of only a few thousand to several hundred thousand nucleotides. While constructing a high-quality consensus of virus strains might seem feasible, most current assemblers only generated fragmented contigs. It's important to emphasize the significance of assembling a single full-length consensus contig, as it's vital for identifying genetic diversity and estimating strain abundance accurately.
Results: In this paper, we developed FC-Virus, a de novo genome assembly strategy specifically targeting highly diverse viral populations. FC-Virus first identifies the k-mers that are common across most viral strains, and then uses these k-mers as a backbone to build a full-length consensus sequence covering the entire genome. We benchmark FC-Virus against state-of-the-art genome assemblers.
Conclusion: Experimental results confirm that FC-Virus can construct a single, accurate full-length consensus, whereas other assemblers only manage to produce fragmented contigs. FC-Virus is freely available at https://github.com/qdu-bioinfo/FC-Virus.git .
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.