Ascending Vaginal Infection in Mice Induces Preterm Birth and Neonatal Morbidity

IF 4.7 2区 医学 Q1 PATHOLOGY
Ashley K. Boyle , Konstantina Tetorou , Natalie Suff , Laura Beecroft , Margherita Mazzaschi , Rajvinder Karda , Mariya Hristova , Simon N. Waddington , Donald Peebles
{"title":"Ascending Vaginal Infection in Mice Induces Preterm Birth and Neonatal Morbidity","authors":"Ashley K. Boyle ,&nbsp;Konstantina Tetorou ,&nbsp;Natalie Suff ,&nbsp;Laura Beecroft ,&nbsp;Margherita Mazzaschi ,&nbsp;Rajvinder Karda ,&nbsp;Mariya Hristova ,&nbsp;Simon N. Waddington ,&nbsp;Donald Peebles","doi":"10.1016/j.ajpath.2025.01.008","DOIUrl":null,"url":null,"abstract":"<div><div>Preterm birth (PTB; delivery before 37 weeks), the main cause of neonatal death worldwide, can lead to adverse neurodevelopmental outcomes, as well as lung and gut pathology. PTB can be associated with ascending vaginal infection. Ascending <em>Escherichia coli</em> infection in pregnant mice induces PTB and reduces pup survival. The current study demonstrated that this model recapitulates the pathology observed in human preterm neonates (namely, neuroinflammation, lung injury, and gut inflammation). In neonatal brains, there is widespread cell death, microglial activation, astrogliosis, and reduced neuronal density. The utility of this model was validated by assessing the efficacy of maternal cervical gene therapy with an adeno-associated viral vector containing human β defensin 3. This improved pup survival and reduced tumor necrosis factor alpha mRNA expression in perinatal pup brains exposed to <em>E. coli</em>. This model provides a unique opportunity to evaluate the therapeutic benefit of preterm labor interventions on perinatal pathology.</div></div>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":"195 5","pages":"Pages 891-906"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0002944025000409","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Preterm birth (PTB; delivery before 37 weeks), the main cause of neonatal death worldwide, can lead to adverse neurodevelopmental outcomes, as well as lung and gut pathology. PTB can be associated with ascending vaginal infection. Ascending Escherichia coli infection in pregnant mice induces PTB and reduces pup survival. The current study demonstrated that this model recapitulates the pathology observed in human preterm neonates (namely, neuroinflammation, lung injury, and gut inflammation). In neonatal brains, there is widespread cell death, microglial activation, astrogliosis, and reduced neuronal density. The utility of this model was validated by assessing the efficacy of maternal cervical gene therapy with an adeno-associated viral vector containing human β defensin 3. This improved pup survival and reduced tumor necrosis factor alpha mRNA expression in perinatal pup brains exposed to E. coli. This model provides a unique opportunity to evaluate the therapeutic benefit of preterm labor interventions on perinatal pathology.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.40
自引率
0.00%
发文量
178
审稿时长
30 days
期刊介绍: The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信