Thermal-responsive luminescence/dielectric responses with reversibly shifted light emissions

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ming Zhu, Pei-Zhi Huang, Lin-Mei Li, Yi-Xuan Yang, Lei Pan, Zhi-Jie Wang, Hao-Fei Ni, Feng-Wen Zhang, Gele Teri, Zhi-Xu Zhang, Zunqi Liu, Da-Wei Fu, Yi Zhang
{"title":"Thermal-responsive luminescence/dielectric responses with reversibly shifted light emissions","authors":"Ming Zhu, Pei-Zhi Huang, Lin-Mei Li, Yi-Xuan Yang, Lei Pan, Zhi-Jie Wang, Hao-Fei Ni, Feng-Wen Zhang, Gele Teri, Zhi-Xu Zhang, Zunqi Liu, Da-Wei Fu, Yi Zhang","doi":"10.1039/d4sc06631f","DOIUrl":null,"url":null,"abstract":"Molecular-rotor-type crystals dominated by crown ethers have garnered significant attention for their applications in sensing, optoelectronics, information encryption and other diverse fields. However, the role of crown ethers in regulating photoluminescent properties has long been overlooked in such structural systems. Here, by inserting 18-crown-6 molecules into the ionic crystal (4-pyridinemethaneaminum)PF<small><sub>6</sub></small> (PP-1), we constructed a molecular-rotor-type crystal [(4-pyridinemethaneaminum)(18-crown-6)][PF<small><sub>6</sub></small>] (PCP-1), exhibiting sensitively thermal-driven, unusual PL/dielectric responses. Notably, the introduction of the 18-crown-6 molecule changed the dynamic thermal motion and exerted a confinement effect through rich hydrogen bonding interactions, thereby inducing structural phase transitions and modulating energy transfer processes. These not only brought about switchable dielectric responses but also resulted in a comprehensive improvement of PL properties, encompassing extended lifetime, doubled quantum yield and temperature-controllable luminescent color. This study offers novel insights into the role of crown ethers in developing smart luminescent materials, holding promising prospects for intelligent recognition and information encryption.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"77 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc06631f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular-rotor-type crystals dominated by crown ethers have garnered significant attention for their applications in sensing, optoelectronics, information encryption and other diverse fields. However, the role of crown ethers in regulating photoluminescent properties has long been overlooked in such structural systems. Here, by inserting 18-crown-6 molecules into the ionic crystal (4-pyridinemethaneaminum)PF6 (PP-1), we constructed a molecular-rotor-type crystal [(4-pyridinemethaneaminum)(18-crown-6)][PF6] (PCP-1), exhibiting sensitively thermal-driven, unusual PL/dielectric responses. Notably, the introduction of the 18-crown-6 molecule changed the dynamic thermal motion and exerted a confinement effect through rich hydrogen bonding interactions, thereby inducing structural phase transitions and modulating energy transfer processes. These not only brought about switchable dielectric responses but also resulted in a comprehensive improvement of PL properties, encompassing extended lifetime, doubled quantum yield and temperature-controllable luminescent color. This study offers novel insights into the role of crown ethers in developing smart luminescent materials, holding promising prospects for intelligent recognition and information encryption.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信