Xiaoling Fu , Jiaqing Wu , Zhi Zhou , Ming Jen Tan , Yongjiang Huang , Jianfei Sun , Wenli Song , Pengfei Guan , Yuanzheng Yang , Yi Li , Robert O. Ritchie
{"title":"Interfacial strain concentration and relaxation along crystalline-amorphous boundaries of B2-reinforced bulk-metallic-glass-composites during loading","authors":"Xiaoling Fu , Jiaqing Wu , Zhi Zhou , Ming Jen Tan , Yongjiang Huang , Jianfei Sun , Wenli Song , Pengfei Guan , Yuanzheng Yang , Yi Li , Robert O. Ritchie","doi":"10.1016/j.actamat.2025.120787","DOIUrl":null,"url":null,"abstract":"<div><div>Interfacial stress concentration promotes both martensitic transformation nucleation and shear band initiation in B2-reinforced bulk-metallic-glass-composites. As the martensitic transformation occurs in the crystalline (soft) regime, shear bands are often observed in the amorphous (hard) matrix. A long-standing question has been when the stress concentration will prompt the martensitic transformation and when it will give rise to shear band initiation. By definition, stress concentration results from the regional Young's modulus multiplied by the local strain concentration. The localized strain concentration along crystalline-amorphous boundary plays decisive roles in promoting phase transformation and localized shear events. By constantly tracking the interfacial strain distribution through Molecular Dynamics methods, the location and magnitude of the interfacial strain concentration and its relaxation are quantified and correlated with the regional modulus differences. We are proposing that the regional strain concentration and relaxation is always located along soft/hard domains during loading so as to maintain the compatibility of interfacial deformation.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"287 ","pages":"Article 120787"},"PeriodicalIF":8.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425000795","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Interfacial stress concentration promotes both martensitic transformation nucleation and shear band initiation in B2-reinforced bulk-metallic-glass-composites. As the martensitic transformation occurs in the crystalline (soft) regime, shear bands are often observed in the amorphous (hard) matrix. A long-standing question has been when the stress concentration will prompt the martensitic transformation and when it will give rise to shear band initiation. By definition, stress concentration results from the regional Young's modulus multiplied by the local strain concentration. The localized strain concentration along crystalline-amorphous boundary plays decisive roles in promoting phase transformation and localized shear events. By constantly tracking the interfacial strain distribution through Molecular Dynamics methods, the location and magnitude of the interfacial strain concentration and its relaxation are quantified and correlated with the regional modulus differences. We are proposing that the regional strain concentration and relaxation is always located along soft/hard domains during loading so as to maintain the compatibility of interfacial deformation.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.