Nothing Stands Still: A spatiotemporal benchmark on 3D point cloud registration under large geometric and temporal change

IF 10.6 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL
Tao Sun , Yan Hao , Shengyu Huang , Silvio Savarese , Konrad Schindler , Marc Pollefeys , Iro Armeni
{"title":"Nothing Stands Still: A spatiotemporal benchmark on 3D point cloud registration under large geometric and temporal change","authors":"Tao Sun ,&nbsp;Yan Hao ,&nbsp;Shengyu Huang ,&nbsp;Silvio Savarese ,&nbsp;Konrad Schindler ,&nbsp;Marc Pollefeys ,&nbsp;Iro Armeni","doi":"10.1016/j.isprsjprs.2025.01.010","DOIUrl":null,"url":null,"abstract":"<div><div>Building 3D geometric maps of man-made spaces is a well-established and active field that is fundamental to numerous computer vision and robotics applications. However, considering the continuously evolving nature of built environments, it is essential to question the capabilities of current mapping efforts in handling temporal changes. In addition to the above, the ability to create spatiotemporal maps holds significant potential for achieving sustainability and circularity goals. Existing mapping approaches focus on small changes, such as object relocation within common living spaces or self-driving car operation in outdoor spaces; all cases where the main structure of the scene remains fixed. Consequently, these approaches fail to address more radical change in the structure of the built environment, such as on the geometry and topology of it. To promote advancements on this front, we introduce the <strong><strong>Nothing Stands Still</strong> (<strong>NSS</strong>)</strong> benchmark, which focuses on the spatiotemporal registration of 3D scenes undergoing large spatial and temporal change, ultimately creating one coherent spatiotemporal map. Specifically, the benchmark involves registering within the same coordinate system two or more partial 3D point clouds (fragments) originating from the same scene but captured from different spatiotemporal views. In addition to the standard task of <em>pairwise</em> registration, we assess <em>multi-way</em> registration of multiple fragments that belong to the same indoor environment and any temporal stage. As part of <strong>NSS</strong>, we introduce a dataset of 3D point clouds recurrently captured in large-scale building indoor environments that are under construction or renovation. The <strong>NSS</strong> benchmark presents three scenarios of increasing difficulty, with the goal to quantify the generalization ability of point cloud registration methods over space (within one building and across buildings) and time. We conduct extensive evaluations of state-of-the-art methods on <strong>NSS</strong> over all tasks and scenarios. The results demonstrate the necessity for novel methods specifically designed to handle large spatiotemporal changes. The homepage of our benchmark is at <span><span>http://nothing-stands-still.com</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"220 ","pages":"Pages 799-823"},"PeriodicalIF":10.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271625000103","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Building 3D geometric maps of man-made spaces is a well-established and active field that is fundamental to numerous computer vision and robotics applications. However, considering the continuously evolving nature of built environments, it is essential to question the capabilities of current mapping efforts in handling temporal changes. In addition to the above, the ability to create spatiotemporal maps holds significant potential for achieving sustainability and circularity goals. Existing mapping approaches focus on small changes, such as object relocation within common living spaces or self-driving car operation in outdoor spaces; all cases where the main structure of the scene remains fixed. Consequently, these approaches fail to address more radical change in the structure of the built environment, such as on the geometry and topology of it. To promote advancements on this front, we introduce the Nothing Stands Still (NSS) benchmark, which focuses on the spatiotemporal registration of 3D scenes undergoing large spatial and temporal change, ultimately creating one coherent spatiotemporal map. Specifically, the benchmark involves registering within the same coordinate system two or more partial 3D point clouds (fragments) originating from the same scene but captured from different spatiotemporal views. In addition to the standard task of pairwise registration, we assess multi-way registration of multiple fragments that belong to the same indoor environment and any temporal stage. As part of NSS, we introduce a dataset of 3D point clouds recurrently captured in large-scale building indoor environments that are under construction or renovation. The NSS benchmark presents three scenarios of increasing difficulty, with the goal to quantify the generalization ability of point cloud registration methods over space (within one building and across buildings) and time. We conduct extensive evaluations of state-of-the-art methods on NSS over all tasks and scenarios. The results demonstrate the necessity for novel methods specifically designed to handle large spatiotemporal changes. The homepage of our benchmark is at http://nothing-stands-still.com.
求助全文
约1分钟内获得全文 求助全文
来源期刊
ISPRS Journal of Photogrammetry and Remote Sensing
ISPRS Journal of Photogrammetry and Remote Sensing 工程技术-成像科学与照相技术
CiteScore
21.00
自引率
6.30%
发文量
273
审稿时长
40 days
期刊介绍: The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive. P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields. In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信