{"title":"Trustworthy Limited Data CT Reconstruction Using Progressive Artifact Image Learning","authors":"Jianjia Zhang;Zirong Li;Jiayi Pan;Shaoyu Wang;Weiwen Wu","doi":"10.1109/TIP.2025.3534559","DOIUrl":null,"url":null,"abstract":"The reconstruction of limited data computed tomography (CT) aims to obtain high-quality images from a reduced set of projection views acquired from sparse views or limited angles. This approach is utilized to reduce radiation exposure or expedite the scanning process. Deep Learning (DL) techniques have been incorporated into limited data CT reconstruction tasks and achieve remarkable performance. However, these DL methods suffer from various limitations. Firstly, the distribution inconsistency between the simulation data and the real data hinders the generalization of these DL-based methods. Secondly, these DL-based methods could be unstable due to lack of kernel awareness. This paper addresses these issues by proposing an unrolling framework called Progressive Artifact Image Learning (PAIL) for limited data CT reconstruction. The proposed PAIL primarily consists of three key modules, i.e., a residual domain module (RDM), an image domain module (IDM), and a wavelet domain module (WDM). The RDM is designed to refine features from residual images and suppress the observable artifacts from the reconstructed images. This module could effectively alleviate the effects of distribution inconsistency among different data sets by transferring the optimization space from the original data domain to the residual data domain. The IDM is designed to suppress the unobservable artifacts in the image space. The RDM and IDM collaborate with each other during the iterative optimization process, progressively removing artifacts and reconstructing the underlying CT image. Furthermore, in order to void the potential hallucinations generated by the RDM and IDM, an additional WDM is incorporated into the network to enhance its stability. This is achieved by making the network become kernel-aware via integrating wavelet-based compressed sensing. The effectiveness of the proposed PAIL method has been consistently verified on two simulated CT data sets, a clinical cardiac data set and a sheep lung data set. Compared to other state-of-the-art methods, the proposed PAIL method achieves superior performance in various limited data CT reconstruction tasks, demonstrating its promising generalization and stability.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"1163-1178"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10869311/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The reconstruction of limited data computed tomography (CT) aims to obtain high-quality images from a reduced set of projection views acquired from sparse views or limited angles. This approach is utilized to reduce radiation exposure or expedite the scanning process. Deep Learning (DL) techniques have been incorporated into limited data CT reconstruction tasks and achieve remarkable performance. However, these DL methods suffer from various limitations. Firstly, the distribution inconsistency between the simulation data and the real data hinders the generalization of these DL-based methods. Secondly, these DL-based methods could be unstable due to lack of kernel awareness. This paper addresses these issues by proposing an unrolling framework called Progressive Artifact Image Learning (PAIL) for limited data CT reconstruction. The proposed PAIL primarily consists of three key modules, i.e., a residual domain module (RDM), an image domain module (IDM), and a wavelet domain module (WDM). The RDM is designed to refine features from residual images and suppress the observable artifacts from the reconstructed images. This module could effectively alleviate the effects of distribution inconsistency among different data sets by transferring the optimization space from the original data domain to the residual data domain. The IDM is designed to suppress the unobservable artifacts in the image space. The RDM and IDM collaborate with each other during the iterative optimization process, progressively removing artifacts and reconstructing the underlying CT image. Furthermore, in order to void the potential hallucinations generated by the RDM and IDM, an additional WDM is incorporated into the network to enhance its stability. This is achieved by making the network become kernel-aware via integrating wavelet-based compressed sensing. The effectiveness of the proposed PAIL method has been consistently verified on two simulated CT data sets, a clinical cardiac data set and a sheep lung data set. Compared to other state-of-the-art methods, the proposed PAIL method achieves superior performance in various limited data CT reconstruction tasks, demonstrating its promising generalization and stability.