Trustworthy Limited Data CT Reconstruction Using Progressive Artifact Image Learning

Jianjia Zhang;Zirong Li;Jiayi Pan;Shaoyu Wang;Weiwen Wu
{"title":"Trustworthy Limited Data CT Reconstruction Using Progressive Artifact Image Learning","authors":"Jianjia Zhang;Zirong Li;Jiayi Pan;Shaoyu Wang;Weiwen Wu","doi":"10.1109/TIP.2025.3534559","DOIUrl":null,"url":null,"abstract":"The reconstruction of limited data computed tomography (CT) aims to obtain high-quality images from a reduced set of projection views acquired from sparse views or limited angles. This approach is utilized to reduce radiation exposure or expedite the scanning process. Deep Learning (DL) techniques have been incorporated into limited data CT reconstruction tasks and achieve remarkable performance. However, these DL methods suffer from various limitations. Firstly, the distribution inconsistency between the simulation data and the real data hinders the generalization of these DL-based methods. Secondly, these DL-based methods could be unstable due to lack of kernel awareness. This paper addresses these issues by proposing an unrolling framework called Progressive Artifact Image Learning (PAIL) for limited data CT reconstruction. The proposed PAIL primarily consists of three key modules, i.e., a residual domain module (RDM), an image domain module (IDM), and a wavelet domain module (WDM). The RDM is designed to refine features from residual images and suppress the observable artifacts from the reconstructed images. This module could effectively alleviate the effects of distribution inconsistency among different data sets by transferring the optimization space from the original data domain to the residual data domain. The IDM is designed to suppress the unobservable artifacts in the image space. The RDM and IDM collaborate with each other during the iterative optimization process, progressively removing artifacts and reconstructing the underlying CT image. Furthermore, in order to void the potential hallucinations generated by the RDM and IDM, an additional WDM is incorporated into the network to enhance its stability. This is achieved by making the network become kernel-aware via integrating wavelet-based compressed sensing. The effectiveness of the proposed PAIL method has been consistently verified on two simulated CT data sets, a clinical cardiac data set and a sheep lung data set. Compared to other state-of-the-art methods, the proposed PAIL method achieves superior performance in various limited data CT reconstruction tasks, demonstrating its promising generalization and stability.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"1163-1178"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10869311/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The reconstruction of limited data computed tomography (CT) aims to obtain high-quality images from a reduced set of projection views acquired from sparse views or limited angles. This approach is utilized to reduce radiation exposure or expedite the scanning process. Deep Learning (DL) techniques have been incorporated into limited data CT reconstruction tasks and achieve remarkable performance. However, these DL methods suffer from various limitations. Firstly, the distribution inconsistency between the simulation data and the real data hinders the generalization of these DL-based methods. Secondly, these DL-based methods could be unstable due to lack of kernel awareness. This paper addresses these issues by proposing an unrolling framework called Progressive Artifact Image Learning (PAIL) for limited data CT reconstruction. The proposed PAIL primarily consists of three key modules, i.e., a residual domain module (RDM), an image domain module (IDM), and a wavelet domain module (WDM). The RDM is designed to refine features from residual images and suppress the observable artifacts from the reconstructed images. This module could effectively alleviate the effects of distribution inconsistency among different data sets by transferring the optimization space from the original data domain to the residual data domain. The IDM is designed to suppress the unobservable artifacts in the image space. The RDM and IDM collaborate with each other during the iterative optimization process, progressively removing artifacts and reconstructing the underlying CT image. Furthermore, in order to void the potential hallucinations generated by the RDM and IDM, an additional WDM is incorporated into the network to enhance its stability. This is achieved by making the network become kernel-aware via integrating wavelet-based compressed sensing. The effectiveness of the proposed PAIL method has been consistently verified on two simulated CT data sets, a clinical cardiac data set and a sheep lung data set. Compared to other state-of-the-art methods, the proposed PAIL method achieves superior performance in various limited data CT reconstruction tasks, demonstrating its promising generalization and stability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信