Dynamics of redshift/blueshift during free fall under the Schwarzschild horizon

IF 2.8 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
H. V. Ovcharenko, O. B. Zaslavskii
{"title":"Dynamics of redshift/blueshift during free fall under the Schwarzschild horizon","authors":"H. V. Ovcharenko,&nbsp;O. B. Zaslavskii","doi":"10.1007/s10714-025-03370-9","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a free-falling observer who crosses the event horizon in the Schwarzschild background. In the course of this fall, he/she can receive signals from an object (like a star surface) that emits radiation. We study how the frequency received by an observer changes depending on the proper time on his/her trajectory. The scenarios are classified depending on whether the frequency is infinite, finite or zero near the singularity and the horizon. This depends crucially on the angular momenta of an observer and a photon. In this work we consider also emission process, and, as we show, conditions of emission strongly influence parameters of a photon, and thus received frequency. As one of our main results, we present numerical calculations showing evolution of the received frequency during the process of diving into a black hole, depending on parameters of an observer and emitter. We also analyze how a falling observer will see a night sky as he/she approaches the singularity. We show that there appear several blind zones, which were not analyzed previously.\n</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"57 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-025-03370-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a free-falling observer who crosses the event horizon in the Schwarzschild background. In the course of this fall, he/she can receive signals from an object (like a star surface) that emits radiation. We study how the frequency received by an observer changes depending on the proper time on his/her trajectory. The scenarios are classified depending on whether the frequency is infinite, finite or zero near the singularity and the horizon. This depends crucially on the angular momenta of an observer and a photon. In this work we consider also emission process, and, as we show, conditions of emission strongly influence parameters of a photon, and thus received frequency. As one of our main results, we present numerical calculations showing evolution of the received frequency during the process of diving into a black hole, depending on parameters of an observer and emitter. We also analyze how a falling observer will see a night sky as he/she approaches the singularity. We show that there appear several blind zones, which were not analyzed previously.

史瓦西视界下自由落体过程中的红移/蓝移动力学
我们考虑在史瓦西背景下穿越视界的自由落体观察者。在这个秋天的过程中,他/她可以接收到一个物体(比如恒星表面)发出的辐射信号。我们研究了观察者接收到的频率是如何随着他/她轨迹上的固有时而变化的。根据频率在奇点和视界附近是无限的、有限的还是零来分类。这主要取决于观察者和光子的角动量。在这项工作中,我们还考虑了发射过程,并且,正如我们所示,发射条件强烈影响光子的参数,从而影响接收频率。作为我们的主要结果之一,我们提出了数值计算,显示了在进入黑洞过程中接收频率的演变,取决于观测者和发射器的参数。我们还分析了坠落的观测者在接近奇点时将如何看到夜空。我们发现存在一些以前没有分析过的盲区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
General Relativity and Gravitation
General Relativity and Gravitation 物理-天文与天体物理
CiteScore
4.60
自引率
3.60%
发文量
136
审稿时长
3 months
期刊介绍: General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation. It welcomes in particular original articles on the following topics of current research: Analytical general relativity, including its interface with geometrical analysis Numerical relativity Theoretical and observational cosmology Relativistic astrophysics Gravitational waves: data analysis, astrophysical sources and detector science Extensions of general relativity Supergravity Gravitational aspects of string theory and its extensions Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations Quantum field theory in curved spacetime Non-commutative geometry and gravitation Experimental gravity, in particular tests of general relativity The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信