Distance-preserving stabilizer measurements in hypergraph product codes

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-01-30 DOI:10.22331/q-2025-01-30-1618
Argyris Giannisis Manes, Jahan Claes
{"title":"Distance-preserving stabilizer measurements in hypergraph product codes","authors":"Argyris Giannisis Manes, Jahan Claes","doi":"10.22331/q-2025-01-30-1618","DOIUrl":null,"url":null,"abstract":"Unlike the surface code, quantum low-density parity-check (QLDPC) codes can have a finite encoding rate, potentially lowering the error correction overhead. However, finite-rate QLDPC codes have nonlocal stabilizers, making it difficult to design stabilizer measurement circuits that are low-depth and do not decrease the effective distance. Here, we demonstrate that a popular family of finite-rate QLDPC codes, hypergraph product codes, has the convenient property of distance-robustness: any stabilizer measurement circuit preserves the effective distance. In particular, we prove the depth-optimal circuit in [Tremblay et al, PRL 129, 050504 (2022)] is also optimal in terms of effective distance.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"55 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-01-30-1618","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Unlike the surface code, quantum low-density parity-check (QLDPC) codes can have a finite encoding rate, potentially lowering the error correction overhead. However, finite-rate QLDPC codes have nonlocal stabilizers, making it difficult to design stabilizer measurement circuits that are low-depth and do not decrease the effective distance. Here, we demonstrate that a popular family of finite-rate QLDPC codes, hypergraph product codes, has the convenient property of distance-robustness: any stabilizer measurement circuit preserves the effective distance. In particular, we prove the depth-optimal circuit in [Tremblay et al, PRL 129, 050504 (2022)] is also optimal in terms of effective distance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信