Engineering tri-channel orthogonal luminescence in a single nanoparticle for Information Encryption

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Jianhao Zheng, Pengye Du, Ran An, Yuan Liang, Yi Wei, Shuyu Liu, Pengpeng Lei, Hongjie Zhang
{"title":"Engineering tri-channel orthogonal luminescence in a single nanoparticle for Information Encryption","authors":"Jianhao Zheng, Pengye Du, Ran An, Yuan Liang, Yi Wei, Shuyu Liu, Pengpeng Lei, Hongjie Zhang","doi":"10.1039/d4qi03199g","DOIUrl":null,"url":null,"abstract":"Optical anti-counterfeiting technology based on the multicolor emission generated by the abundant energy levels of rare earth ions shows great potential in the face of increasing information security problems worldwide. However, it is not an easy task to achieve multi-channel orthogonal emissions in a single nanoparticle with simple structure by convenient method. In this work, we have successfully realized the tri-channel orthogonal emissions under three excitation wavelengths in the NaErF4@NaYF4:Eu3+@NaBiF4:Yb3+,Tm3+ core@shell@shell nanoparticles. In our design, the interlayer NaYF4:Eu3+ plays the role of a piece of three carvings. Not only it can enhances the upconversion luminescence intensity of NaErF4, but also makes the emission color of Er3+ changes from red to green by the energy transfer process between Er3+ and Eu3+. Moreover, it can produces red emission under 395 nm light excitation. This selective excitation strategy enables R-G-B tri-channel orthogonal emissions in a single nanoparticle by simply changing the excitation wavelength, which is very suitable for high level optical information encryption. This work provides a simple and effective method for the design of smart luminescent materials, showing great potential for multi-level anti-counterfeiting and information security.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"50 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi03199g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Optical anti-counterfeiting technology based on the multicolor emission generated by the abundant energy levels of rare earth ions shows great potential in the face of increasing information security problems worldwide. However, it is not an easy task to achieve multi-channel orthogonal emissions in a single nanoparticle with simple structure by convenient method. In this work, we have successfully realized the tri-channel orthogonal emissions under three excitation wavelengths in the NaErF4@NaYF4:Eu3+@NaBiF4:Yb3+,Tm3+ core@shell@shell nanoparticles. In our design, the interlayer NaYF4:Eu3+ plays the role of a piece of three carvings. Not only it can enhances the upconversion luminescence intensity of NaErF4, but also makes the emission color of Er3+ changes from red to green by the energy transfer process between Er3+ and Eu3+. Moreover, it can produces red emission under 395 nm light excitation. This selective excitation strategy enables R-G-B tri-channel orthogonal emissions in a single nanoparticle by simply changing the excitation wavelength, which is very suitable for high level optical information encryption. This work provides a simple and effective method for the design of smart luminescent materials, showing great potential for multi-level anti-counterfeiting and information security.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信