A semi-implicit exactly fully well-balanced relaxation scheme for the Shallow Water Linearized Moment Equations

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
C. Caballero-Cárdenas , I. Gómez-Bueno , A. Del Grosso , J. Koellermeier , T. Morales de Luna
{"title":"A semi-implicit exactly fully well-balanced relaxation scheme for the Shallow Water Linearized Moment Equations","authors":"C. Caballero-Cárdenas ,&nbsp;I. Gómez-Bueno ,&nbsp;A. Del Grosso ,&nbsp;J. Koellermeier ,&nbsp;T. Morales de Luna","doi":"10.1016/j.cma.2025.117788","DOIUrl":null,"url":null,"abstract":"<div><div>When dealing with shallow water simulations, the velocity profile is often assumed to be constant along the vertical axis. However, since in many applications this is not the case, modeling errors can be significant. Hence, in this work, we deal with the Shallow Water Linearized Moment Equations (SWLME), in which the velocity is no longer constant in the vertical direction, where a polynomial expansion around the mean value is considered. The linearized version implies neglecting the non-linear terms of the basis coefficients in the higher order equations. As a result, the model is always hyperbolic and the stationary solutions can be more easily computed. Then, our objective is to propose an efficient, accurate and robust numerical scheme for the SWLME model, specially adapted for low Froude number situations. Hence, we describe a semi-implicit second order exactly fully well-balanced method. More specifically, a splitting is performed to separate acoustic and material phenomena. The acoustic waves are treated in an implicit manner to gain in efficiency when dealing with subsonic flow regimes, whereas the second order of accuracy is achieved thanks to a polynomial reconstruction and Strang-splitting method. We also exploit a reconstruction operator to achieve the fully well-balanced character of the method. Extensive numerical tests demonstrate the well-balanced properties and large speed-up compared to traditional methods.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"437 ","pages":"Article 117788"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004578252500060X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

When dealing with shallow water simulations, the velocity profile is often assumed to be constant along the vertical axis. However, since in many applications this is not the case, modeling errors can be significant. Hence, in this work, we deal with the Shallow Water Linearized Moment Equations (SWLME), in which the velocity is no longer constant in the vertical direction, where a polynomial expansion around the mean value is considered. The linearized version implies neglecting the non-linear terms of the basis coefficients in the higher order equations. As a result, the model is always hyperbolic and the stationary solutions can be more easily computed. Then, our objective is to propose an efficient, accurate and robust numerical scheme for the SWLME model, specially adapted for low Froude number situations. Hence, we describe a semi-implicit second order exactly fully well-balanced method. More specifically, a splitting is performed to separate acoustic and material phenomena. The acoustic waves are treated in an implicit manner to gain in efficiency when dealing with subsonic flow regimes, whereas the second order of accuracy is achieved thanks to a polynomial reconstruction and Strang-splitting method. We also exploit a reconstruction operator to achieve the fully well-balanced character of the method. Extensive numerical tests demonstrate the well-balanced properties and large speed-up compared to traditional methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信