Karl Werder, Lan Cao, Eun Hee Park, Balasubramaniam Ramesh
{"title":"Why AI Monitoring Faces Resistance and What Healthcare Organizations Can Do About It: An Emotion-Based Perspective.","authors":"Karl Werder, Lan Cao, Eun Hee Park, Balasubramaniam Ramesh","doi":"10.2196/51785","DOIUrl":null,"url":null,"abstract":"<p><p>Continuous monitoring of patients' health facilitated by artificial intelligence (AI) has enhanced the quality of health care, that is, the ability to access effective care. However, AI monitoring often encounters resistance to adoption by decision makers. Healthcare organizations frequently assume that the resistance stems from patients' rational evaluation of the technology's costs and benefits. Recent research challenges this assumption and suggests that the resistance to AI monitoring is influenced by the emotional experiences of patients and their surrogate decision makers. We develop a framework from an emotional perspective, provide important implications for healthcare organizations, and offer recommendations to help reduce resistance to AI monitoring.</p>","PeriodicalId":16337,"journal":{"name":"Journal of Medical Internet Research","volume":"27 ","pages":"e51785"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829173/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Internet Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/51785","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Continuous monitoring of patients' health facilitated by artificial intelligence (AI) has enhanced the quality of health care, that is, the ability to access effective care. However, AI monitoring often encounters resistance to adoption by decision makers. Healthcare organizations frequently assume that the resistance stems from patients' rational evaluation of the technology's costs and benefits. Recent research challenges this assumption and suggests that the resistance to AI monitoring is influenced by the emotional experiences of patients and their surrogate decision makers. We develop a framework from an emotional perspective, provide important implications for healthcare organizations, and offer recommendations to help reduce resistance to AI monitoring.
期刊介绍:
The Journal of Medical Internet Research (JMIR) is a highly respected publication in the field of health informatics and health services. With a founding date in 1999, JMIR has been a pioneer in the field for over two decades.
As a leader in the industry, the journal focuses on digital health, data science, health informatics, and emerging technologies for health, medicine, and biomedical research. It is recognized as a top publication in these disciplines, ranking in the first quartile (Q1) by Impact Factor.
Notably, JMIR holds the prestigious position of being ranked #1 on Google Scholar within the "Medical Informatics" discipline.