A Bi-Specific T Cell-Engaging Antibody Shows Potent Activity, Specificity, and Tumor Microenvironment Remodeling in Experimental Syngeneic and Genetically Engineered Models of GBM.

Markella Z Zannikou, Joseph T Duffy, Daniele Procissi, Hinda Najem, Rebecca N Levine, Dolores Hambardzumyan, Catalina Lee-Chang, Lara Leoni, Bin Zhang, Amy B Heimberger, Jason Miska, Irina V Balyasnikova
{"title":"A Bi-Specific T Cell-Engaging Antibody Shows Potent Activity, Specificity, and Tumor Microenvironment Remodeling in Experimental Syngeneic and Genetically Engineered Models of GBM.","authors":"Markella Z Zannikou, Joseph T Duffy, Daniele Procissi, Hinda Najem, Rebecca N Levine, Dolores Hambardzumyan, Catalina Lee-Chang, Lara Leoni, Bin Zhang, Amy B Heimberger, Jason Miska, Irina V Balyasnikova","doi":"10.1101/2024.12.18.628714","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bispecific T cell-engagers (BTEs) are engineered antibodies that redirect T cells to target antigen-expressing tumors. BTEs targeting tumor-specific antigens such as interleukin 13 receptor alpha 2 (IL13Rα2) and EGFRvIII have been developed for glioblastoma (GBM). However, there is limited mechanistic understanding of the action of BTE since prior studies were mostly conducted in immunocompromised animal models. To close this gap, the function of BTEs was assessed in the immunosuppressive glioma microenvironment (TME) of orthotopic and genetically engineered mouse models (GEMM) with intact immune systems.</p><p><strong>Methods: </strong>A BTE that bridges CD3 epsilon on murine T cells to IL13Rα2-positive GBM cells was developed and the therapeutic mechanism investigated in immunocompetent mouse models of GBM. Multi-color flow cytometry, single-cell RNA sequencing (scRNA-Seq), multiplex immunofluorescence, and multiparametric magnetic resonance imaging (MRI) across multiple pre-clinical models of GBM were used to evaluate the mechanism and action and response.</p><p><strong>Results: </strong>BTE-mediated interactions between murine T cells and GBM cells triggered T cell activation and antigen-dependent killing of GBM cells. BTE treatment significantly extended the survival of mice bearing IL13Rα2-expressing orthotopic glioma and de novo forming GBM in the GEMM. Quantified parametric MR imaging validated the survival data showing a reduction in glioma volume and decreased glioma viability. Flow cytometric and scRNA-seq analyses of the TME revealed robust increases in activated and memory T cells and decreases in immunosuppressive myeloid cells in the brains of mice following BTE treatment.</p><p><strong>Conclusions: </strong>Our data demonstrate that the survival benefits of BTEs in preclinical models of glioma are due to the ability to engage the host immune system in direct killing, induction of immunological memory, and modulation of the TME. These findings provide a deeper insight into the mechanism of BTE actions in GBM.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702671/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.18.628714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Bispecific T cell-engagers (BTEs) are engineered antibodies that redirect T cells to target antigen-expressing tumors. BTEs targeting tumor-specific antigens such as interleukin 13 receptor alpha 2 (IL13Rα2) and EGFRvIII have been developed for glioblastoma (GBM). However, there is limited mechanistic understanding of the action of BTE since prior studies were mostly conducted in immunocompromised animal models. To close this gap, the function of BTEs was assessed in the immunosuppressive glioma microenvironment (TME) of orthotopic and genetically engineered mouse models (GEMM) with intact immune systems.

Methods: A BTE that bridges CD3 epsilon on murine T cells to IL13Rα2-positive GBM cells was developed and the therapeutic mechanism investigated in immunocompetent mouse models of GBM. Multi-color flow cytometry, single-cell RNA sequencing (scRNA-Seq), multiplex immunofluorescence, and multiparametric magnetic resonance imaging (MRI) across multiple pre-clinical models of GBM were used to evaluate the mechanism and action and response.

Results: BTE-mediated interactions between murine T cells and GBM cells triggered T cell activation and antigen-dependent killing of GBM cells. BTE treatment significantly extended the survival of mice bearing IL13Rα2-expressing orthotopic glioma and de novo forming GBM in the GEMM. Quantified parametric MR imaging validated the survival data showing a reduction in glioma volume and decreased glioma viability. Flow cytometric and scRNA-seq analyses of the TME revealed robust increases in activated and memory T cells and decreases in immunosuppressive myeloid cells in the brains of mice following BTE treatment.

Conclusions: Our data demonstrate that the survival benefits of BTEs in preclinical models of glioma are due to the ability to engage the host immune system in direct killing, induction of immunological memory, and modulation of the TME. These findings provide a deeper insight into the mechanism of BTE actions in GBM.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信