Susan P Canny, Ian B Stanaway, Sarah E Holton, Mallorie Mitchem, Allison R O'Rourke, Stephan Pribitzer, Sarah K Baxter, Mark M Wurfel, Uma Malhotra, Jane H Buckner, Pavan K Bhatraju, Eric D Morrell, Cate Speake, Carmen Mikacenic, Jessica A Hamerman
{"title":"Proteomic Analyses in COVID-19-Associated Secondary Hemophagocytic Lymphohistiocytosis.","authors":"Susan P Canny, Ian B Stanaway, Sarah E Holton, Mallorie Mitchem, Allison R O'Rourke, Stephan Pribitzer, Sarah K Baxter, Mark M Wurfel, Uma Malhotra, Jane H Buckner, Pavan K Bhatraju, Eric D Morrell, Cate Speake, Carmen Mikacenic, Jessica A Hamerman","doi":"10.1097/CCE.0000000000001203","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong>COVID-19 has been associated with features of a cytokine storm syndrome with some patients sharing features with the hyperinflammatory disorder, secondary hemophagocytic lymphohistiocytosis (sHLH).</p><p><strong>Hypothesis: </strong>We hypothesized that proteins associated with sHLH from other causes will be associated with COVID-sHLH and that subjects with fatal COVID-sHLH would have defects in immune-related pathways.</p><p><strong>Methods and models: </strong>We identified two cohorts of adult patients presenting with COVID-19 at two tertiary care hospitals in Seattle, Washington in 2020 and 2021. In this observational study, we assessed clinical laboratory values and plasma proteomics. Subjects identified as having sHLH (ferritin > 1000 plus cytopenias in two or more lineages [WBC < 5000 odds ratio [OR] ANC (absolute neutrophil count) < 1000, hemoglobin < 9 or hematocrit < 27, platelets < 100,000], and elevated transaminases [either AST (aspartate aminotransferase) or ALT (alanine aminotransferase) > 30] OR subjects with a ferritin > 3000) were compared with those with COVID-19 without sHLH. We identified 264 patients with COVID-19 of whom 24 met our sHLH definition. Eight patients who died of COVID-sHLH underwent genomic sequencing to identify variants in immune-related genes.</p><p><strong>Results: </strong>Nine percent of enrolled COVID-19 subjects met our defined criteria for sHLH (n = 24/264). Using broad serum proteomic approaches (O-link and SomaScan), we identified three proteins increased in subjects with COVID-19-associated sHLH (soluble PD-L1 [sPD-L1], tumor necrosis factor-R1, and interleukin [IL]-18BP, p < 0.05 for O-link and false discovery rate < 0.05 for SomaScan), supporting a role for proteins previously associated with other forms of sHLH (IL-18BP and soluble tumor necrosis factor receptor 1). We also identified candidate proteins and pathways associated with COVID-sHLH, including sPD-L1 and the syntaxin pathway. We detected pathogenic variants in DOCK8 and TMPRSS15 in deceased individuals with COVID-sHLH, further suggesting that alterations in immune-related processes may contribute to hyperinflammation and fatal outcomes in COVID-19.</p><p><strong>Interpretations and conclusions: </strong>Proteins increased in COVID-19-associated sHLH, such as sPD-L1, and pathways, such as the syntaxin pathway, suggest important roles for the immune response in driving sHLH in the context of COVID-19.</p>","PeriodicalId":93957,"journal":{"name":"Critical care explorations","volume":"7 2","pages":"e1203"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789895/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical care explorations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/CCE.0000000000001203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Context: COVID-19 has been associated with features of a cytokine storm syndrome with some patients sharing features with the hyperinflammatory disorder, secondary hemophagocytic lymphohistiocytosis (sHLH).
Hypothesis: We hypothesized that proteins associated with sHLH from other causes will be associated with COVID-sHLH and that subjects with fatal COVID-sHLH would have defects in immune-related pathways.
Methods and models: We identified two cohorts of adult patients presenting with COVID-19 at two tertiary care hospitals in Seattle, Washington in 2020 and 2021. In this observational study, we assessed clinical laboratory values and plasma proteomics. Subjects identified as having sHLH (ferritin > 1000 plus cytopenias in two or more lineages [WBC < 5000 odds ratio [OR] ANC (absolute neutrophil count) < 1000, hemoglobin < 9 or hematocrit < 27, platelets < 100,000], and elevated transaminases [either AST (aspartate aminotransferase) or ALT (alanine aminotransferase) > 30] OR subjects with a ferritin > 3000) were compared with those with COVID-19 without sHLH. We identified 264 patients with COVID-19 of whom 24 met our sHLH definition. Eight patients who died of COVID-sHLH underwent genomic sequencing to identify variants in immune-related genes.
Results: Nine percent of enrolled COVID-19 subjects met our defined criteria for sHLH (n = 24/264). Using broad serum proteomic approaches (O-link and SomaScan), we identified three proteins increased in subjects with COVID-19-associated sHLH (soluble PD-L1 [sPD-L1], tumor necrosis factor-R1, and interleukin [IL]-18BP, p < 0.05 for O-link and false discovery rate < 0.05 for SomaScan), supporting a role for proteins previously associated with other forms of sHLH (IL-18BP and soluble tumor necrosis factor receptor 1). We also identified candidate proteins and pathways associated with COVID-sHLH, including sPD-L1 and the syntaxin pathway. We detected pathogenic variants in DOCK8 and TMPRSS15 in deceased individuals with COVID-sHLH, further suggesting that alterations in immune-related processes may contribute to hyperinflammation and fatal outcomes in COVID-19.
Interpretations and conclusions: Proteins increased in COVID-19-associated sHLH, such as sPD-L1, and pathways, such as the syntaxin pathway, suggest important roles for the immune response in driving sHLH in the context of COVID-19.