Evaluating conversion from mild cognitive impairment to Alzheimer's disease with structural MRI: a machine learning study.

IF 4.1 Q1 CLINICAL NEUROLOGY
Brain communications Pub Date : 2025-01-21 eCollection Date: 2025-01-01 DOI:10.1093/braincomms/fcaf027
Daniela Vecchio, Federica Piras, Federica Natalizi, Nerisa Banaj, Clelia Pellicano, Fabrizio Piras
{"title":"Evaluating conversion from mild cognitive impairment to Alzheimer's disease with structural MRI: a machine learning study.","authors":"Daniela Vecchio, Federica Piras, Federica Natalizi, Nerisa Banaj, Clelia Pellicano, Fabrizio Piras","doi":"10.1093/braincomms/fcaf027","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease is a disabling neurodegenerative disorder for which no effective treatment currently exists. To predict the diagnosis of Alzheimer's disease could be crucial for patients' outcome, but current Alzheimer's disease biomarkers are invasive, time consuming or expensive. Thus, developing MRI-based computational methods for Alzheimer's disease early diagnosis would be essential to narrow down the phenotypic measures predictive of cognitive decline. Amnestic mild cognitive impairment (aMCI) is associated with higher risk for Alzheimer's disease, and here, we aimed to identify MRI-based quantitative rules to predict aMCI to possible Alzheimer's disease conversion, applying different machine learning algorithms sequentially. At baseline, T1-weighted brain images were collected for 104 aMCI patients and processed to obtain 146 volumetric measures of cerebral grey matter regions [regions of interest (ROIs)]. One year later, patients were classified as converters (aMCI-c = 32) or non-converters, i.e. clinically and neuropsychologically stable (aMCI-s = 72) based on cognitive performance. Feature selection was performed by random forest (RF), and the identified seven ROIs volumetric data were used to implement support vector machine (SVM) and decision tree (DT) classification algorithms. Both SVM and DT reached an average accuracy of 86% in identifying aMCI-c and aMCI-s. DT found a critical threshold volume of the right entorhinal cortex (EC-r) as the first feature for differentiating aMCI-c/aMCI-s. Almost all aMCI-c had an EC-r volume <1286 mm<sup>3</sup>, while more than half of the aMCI-s patients had a volume above the identified threshold for this structure. Other key regions for the classification between aMCI-c/aMCI-s were the left lateral occipital (LOC-l), the middle temporal gyrus and the temporal pole cortices. Our study reinforces previous evidence suggesting that the morphometry of the EC-r and LOC-l best predicts aMCI to Alzheimer's disease conversion. Further investigations are needed prior to deeming our findings as a broadly applicable predictive framework. However, here, a first indication was derived for volumetric thresholds that, being easy to obtain, may assist in early identification of Alzheimer's disease in clinical practice, thus contributing to establishing MRI as a useful non-invasive prognostic instrument for dementia onset.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcaf027"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780885/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcaf027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease is a disabling neurodegenerative disorder for which no effective treatment currently exists. To predict the diagnosis of Alzheimer's disease could be crucial for patients' outcome, but current Alzheimer's disease biomarkers are invasive, time consuming or expensive. Thus, developing MRI-based computational methods for Alzheimer's disease early diagnosis would be essential to narrow down the phenotypic measures predictive of cognitive decline. Amnestic mild cognitive impairment (aMCI) is associated with higher risk for Alzheimer's disease, and here, we aimed to identify MRI-based quantitative rules to predict aMCI to possible Alzheimer's disease conversion, applying different machine learning algorithms sequentially. At baseline, T1-weighted brain images were collected for 104 aMCI patients and processed to obtain 146 volumetric measures of cerebral grey matter regions [regions of interest (ROIs)]. One year later, patients were classified as converters (aMCI-c = 32) or non-converters, i.e. clinically and neuropsychologically stable (aMCI-s = 72) based on cognitive performance. Feature selection was performed by random forest (RF), and the identified seven ROIs volumetric data were used to implement support vector machine (SVM) and decision tree (DT) classification algorithms. Both SVM and DT reached an average accuracy of 86% in identifying aMCI-c and aMCI-s. DT found a critical threshold volume of the right entorhinal cortex (EC-r) as the first feature for differentiating aMCI-c/aMCI-s. Almost all aMCI-c had an EC-r volume <1286 mm3, while more than half of the aMCI-s patients had a volume above the identified threshold for this structure. Other key regions for the classification between aMCI-c/aMCI-s were the left lateral occipital (LOC-l), the middle temporal gyrus and the temporal pole cortices. Our study reinforces previous evidence suggesting that the morphometry of the EC-r and LOC-l best predicts aMCI to Alzheimer's disease conversion. Further investigations are needed prior to deeming our findings as a broadly applicable predictive framework. However, here, a first indication was derived for volumetric thresholds that, being easy to obtain, may assist in early identification of Alzheimer's disease in clinical practice, thus contributing to establishing MRI as a useful non-invasive prognostic instrument for dementia onset.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信