SSL-VQ: vector-quantized variational autoencoders for semi-supervised prediction of therapeutic targets across diverse diseases.

Satoko Namba, Chen Li, Noriko Yuyama Otani, Yoshihiro Yamanishi
{"title":"SSL-VQ: vector-quantized variational autoencoders for semi-supervised prediction of therapeutic targets across diverse diseases.","authors":"Satoko Namba, Chen Li, Noriko Yuyama Otani, Yoshihiro Yamanishi","doi":"10.1093/bioinformatics/btaf039","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Identifying effective therapeutic targets poses a challenge in drug discovery, especially for uncharacterized diseases without known therapeutic targets (e.g. rare diseases, intractable diseases).</p><p><strong>Results: </strong>This study presents a novel machine learning approach using multimodal vector-quantized variational autoencoders (VQ-VAEs) for predicting therapeutic target molecules across diseases. To address the lack of known therapeutic target-disease associations, we incorporate the information on uncharacterized diseases without known targets or uncharacterized proteins without known indications (applicable diseases) in the semi-supervised learning (SSL) framework. The method integrates disease-specific and protein perturbation profiles with genetic perturbations (e.g. gene knockdowns and gene overexpressions) at the transcriptome level. Cross-cell representation learning, facilitated by VQ-VAEs, was performed to extract informative features from protein perturbation profiles across diverse human cell types. Concurrently, cross-disease representation learning was performed, leveraging VQ-VAE, to extract informative features reflecting disease states from disease-specific profiles. The model's applicability to uncharacterized diseases or proteins is enhanced by considering the consistency between disease-specific and patient-specific signatures. The efficacy of the method is demonstrated across three practical scenarios for 79 diseases: target repositioning for target-disease pairs, new target prediction for uncharacterized diseases, and new indication prediction for uncharacterized proteins. This method is expected to be valuable for identifying therapeutic targets across various diseases.</p><p><strong>Availability and implementation: </strong>Code: github.com/YamanishiLab/SSL-VQ and Data: 10.5281/zenodo.14644837.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Identifying effective therapeutic targets poses a challenge in drug discovery, especially for uncharacterized diseases without known therapeutic targets (e.g. rare diseases, intractable diseases).

Results: This study presents a novel machine learning approach using multimodal vector-quantized variational autoencoders (VQ-VAEs) for predicting therapeutic target molecules across diseases. To address the lack of known therapeutic target-disease associations, we incorporate the information on uncharacterized diseases without known targets or uncharacterized proteins without known indications (applicable diseases) in the semi-supervised learning (SSL) framework. The method integrates disease-specific and protein perturbation profiles with genetic perturbations (e.g. gene knockdowns and gene overexpressions) at the transcriptome level. Cross-cell representation learning, facilitated by VQ-VAEs, was performed to extract informative features from protein perturbation profiles across diverse human cell types. Concurrently, cross-disease representation learning was performed, leveraging VQ-VAE, to extract informative features reflecting disease states from disease-specific profiles. The model's applicability to uncharacterized diseases or proteins is enhanced by considering the consistency between disease-specific and patient-specific signatures. The efficacy of the method is demonstrated across three practical scenarios for 79 diseases: target repositioning for target-disease pairs, new target prediction for uncharacterized diseases, and new indication prediction for uncharacterized proteins. This method is expected to be valuable for identifying therapeutic targets across various diseases.

Availability and implementation: Code: github.com/YamanishiLab/SSL-VQ and Data: 10.5281/zenodo.14644837.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信