CRAmed: a conditional randomization test for high-dimensional mediation analysis in sparse microbiome data.

Tiantian Liu, Xiangnan Xu, Tao Wang, Peirong Xu
{"title":"CRAmed: a conditional randomization test for high-dimensional mediation analysis in sparse microbiome data.","authors":"Tiantian Liu, Xiangnan Xu, Tao Wang, Peirong Xu","doi":"10.1093/bioinformatics/btaf038","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Numerous microbiome studies have revealed significant associations between the microbiome and human health and disease. These findings have motivated researchers to explore the causal role of the microbiome in human complex traits and diseases. However, the complexities of microbiome data pose challenges for statistical analysis and interpretation of causal effects.</p><p><strong>Results: </strong>We introduced a novel statistical framework, CRAmed, for inferring the mediating role of the microbiome between treatment and outcome. CRAmed improved the interpretability of the mediation analysis by decomposing the natural indirect effect into two parts, corresponding to the presence-absence and abundance of a microbe, respectively. Comprehensive simulations demonstrated the superior performance of CRAmed in Recall, precision, and F1 score, with a notable level of robustness, compared to existing mediation analysis methods. Furthermore, two real data applications illustrated the effectiveness and interpretability of CRAmed. Our research revealed that CRAmed holds promise for uncovering the mediating role of the microbiome and understanding of the factors influencing host health.</p><p><strong>Availability and implementation: </strong>The R package CRAmed implementing the proposed methods is available online at https://github.com/liudoubletian/CRAmed.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821267/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Numerous microbiome studies have revealed significant associations between the microbiome and human health and disease. These findings have motivated researchers to explore the causal role of the microbiome in human complex traits and diseases. However, the complexities of microbiome data pose challenges for statistical analysis and interpretation of causal effects.

Results: We introduced a novel statistical framework, CRAmed, for inferring the mediating role of the microbiome between treatment and outcome. CRAmed improved the interpretability of the mediation analysis by decomposing the natural indirect effect into two parts, corresponding to the presence-absence and abundance of a microbe, respectively. Comprehensive simulations demonstrated the superior performance of CRAmed in Recall, precision, and F1 score, with a notable level of robustness, compared to existing mediation analysis methods. Furthermore, two real data applications illustrated the effectiveness and interpretability of CRAmed. Our research revealed that CRAmed holds promise for uncovering the mediating role of the microbiome and understanding of the factors influencing host health.

Availability and implementation: The R package CRAmed implementing the proposed methods is available online at https://github.com/liudoubletian/CRAmed.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信