Identifying Safeguards Disabled by Epstein-Barr Virus Infections in Genomes From Patients With Breast Cancer: Chromosomal Bioinformatics Analysis.

JMIRx med Pub Date : 2025-01-29 DOI:10.2196/50712
Bernard Friedenson
{"title":"Identifying Safeguards Disabled by Epstein-Barr Virus Infections in Genomes From Patients With Breast Cancer: Chromosomal Bioinformatics Analysis.","authors":"Bernard Friedenson","doi":"10.2196/50712","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The causes of breast cancer are poorly understood. A potential risk factor is Epstein-Barr virus (EBV), a lifelong infection nearly everyone acquires. EBV-transformed human mammary cells accelerate breast cancer when transplanted into immunosuppressed mice, but the virus can disappear as malignant cells reproduce. If this model applies to human breast cancers, then they should have genome damage characteristic of EBV infection.</p><p><strong>Objective: </strong>This study tests the hypothesis that EBV infection predisposes one to breast cancer by causing permanent genome damage that compromises cancer safeguards.</p><p><strong>Methods: </strong>Publicly available genome data from approximately 2100 breast cancers and 25 ovarian cancers were compared to cancers with proven associations to EBV, including 70 nasopharyngeal cancers, 90 Burkitt lymphomas, 88 diffuse large B-cell lymphomas, and 34 gastric cancers. Calculation algorithms to make these comparisons were developed.</p><p><strong>Results: </strong>Chromosome breakpoints in breast and ovarian cancer clustered around breakpoints in EBV-associated cancers. Breakpoint distributions in breast and EBV-associated cancers on some chromosomes were not confidently distinguished (P>.05), but differed from controls unrelated to EBV infection. Viral breakpoint clusters occurred in high-risk, sporadic, and other breast cancer subgroups. Breakpoint clusters disrupted gene functions essential for cancer protection, which remain compromised even if EBV infection disappears. As CRISPR (clustered regularly interspaced short palindromic repeats)-like reminders of past infection during evolution, EBV genome fragments were found regularly interspaced between Piwi-interacting RNA (piRNA) genes on chromosome 6. Both breast and EBV-associated cancers had inactivated genes that guard piRNA defenses and the major histocompatibility complex (MHC) locus. Breast and EBV-associated cancer breakpoints and other variations converged around the highly polymorphic MHC. Not everyone develops cancer because MHC differences produce differing responses to EBV infection. Chromosome shattering and mutation hot spots in breast cancers preferentially occurred at incorporated viral sequences. On chromosome 17, breast cancer breakpoints that clustered around those in EBV-mediated cancers were linked to estrogen effects. Other breast cancer breaks affected sites where EBV inhibits JAK-STAT and SWI-SNF signaling pathways. A characteristic EBV-cancer gene deletion that shifts metabolism to favor tumors was also found in breast cancers. These changes push breast cancer into metastasis and then favor survival of metastatic cells.</p><p><strong>Conclusions: </strong>EBV infection predisposes one to breast cancer and metastasis, even if the virus disappears. Identifying this pathogenic viral damage may improve screening, treatment, and prevention. Immunizing children against EBV may protect against breast, ovarian, other cancers, and potentially even chronic unexplained diseases.</p>","PeriodicalId":73558,"journal":{"name":"JMIRx med","volume":"6 ","pages":"e50712"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796484/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIRx med","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/50712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The causes of breast cancer are poorly understood. A potential risk factor is Epstein-Barr virus (EBV), a lifelong infection nearly everyone acquires. EBV-transformed human mammary cells accelerate breast cancer when transplanted into immunosuppressed mice, but the virus can disappear as malignant cells reproduce. If this model applies to human breast cancers, then they should have genome damage characteristic of EBV infection.

Objective: This study tests the hypothesis that EBV infection predisposes one to breast cancer by causing permanent genome damage that compromises cancer safeguards.

Methods: Publicly available genome data from approximately 2100 breast cancers and 25 ovarian cancers were compared to cancers with proven associations to EBV, including 70 nasopharyngeal cancers, 90 Burkitt lymphomas, 88 diffuse large B-cell lymphomas, and 34 gastric cancers. Calculation algorithms to make these comparisons were developed.

Results: Chromosome breakpoints in breast and ovarian cancer clustered around breakpoints in EBV-associated cancers. Breakpoint distributions in breast and EBV-associated cancers on some chromosomes were not confidently distinguished (P>.05), but differed from controls unrelated to EBV infection. Viral breakpoint clusters occurred in high-risk, sporadic, and other breast cancer subgroups. Breakpoint clusters disrupted gene functions essential for cancer protection, which remain compromised even if EBV infection disappears. As CRISPR (clustered regularly interspaced short palindromic repeats)-like reminders of past infection during evolution, EBV genome fragments were found regularly interspaced between Piwi-interacting RNA (piRNA) genes on chromosome 6. Both breast and EBV-associated cancers had inactivated genes that guard piRNA defenses and the major histocompatibility complex (MHC) locus. Breast and EBV-associated cancer breakpoints and other variations converged around the highly polymorphic MHC. Not everyone develops cancer because MHC differences produce differing responses to EBV infection. Chromosome shattering and mutation hot spots in breast cancers preferentially occurred at incorporated viral sequences. On chromosome 17, breast cancer breakpoints that clustered around those in EBV-mediated cancers were linked to estrogen effects. Other breast cancer breaks affected sites where EBV inhibits JAK-STAT and SWI-SNF signaling pathways. A characteristic EBV-cancer gene deletion that shifts metabolism to favor tumors was also found in breast cancers. These changes push breast cancer into metastasis and then favor survival of metastatic cells.

Conclusions: EBV infection predisposes one to breast cancer and metastasis, even if the virus disappears. Identifying this pathogenic viral damage may improve screening, treatment, and prevention. Immunizing children against EBV may protect against breast, ovarian, other cancers, and potentially even chronic unexplained diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信