Evaluating vitamin C-related gene-environment and metabolite-environment interaction effects on intraocular pressure in the Canadian Longitudinal Study on Aging.

IF 1.9 Q3 GENETICS & HEREDITY
Rebecca Lelievre, Mohan Rakesh, Pirro G Hysi, Julian Little, Ellen E Freeman, Marie-Hélène Roy-Gagnon
{"title":"Evaluating vitamin C-related gene-environment and metabolite-environment interaction effects on intraocular pressure in the Canadian Longitudinal Study on Aging.","authors":"Rebecca Lelievre, Mohan Rakesh, Pirro G Hysi, Julian Little, Ellen E Freeman, Marie-Hélène Roy-Gagnon","doi":"10.1186/s12863-025-01301-w","DOIUrl":null,"url":null,"abstract":"<p><p>High intraocular pressure (IOP) is an important risk factor for glaucoma, which is influenced by genetic and environmental factors. However, the etiology of high IOP remains uncertain. Metabolites are compounds involved in metabolism which provide a link between the internal (genetic) and external environments. O-methylascorbate has been reported to be associated with IOP. In addition, researchers have identified several genetic variants which are associated with metabolite concentrations, including O-methylascorbate and another vitamin C related metabolite, ascorbic acid 2-sulfate. We aimed to understand how O-methylascorbate and ascorbic acid 2-sulfate, or genetic variants associated with these metabolites, modify the associations between dietary environmental variables and IOP. We used data from 8060 participants of the Canadian Longitudinal Study on Aging. Using linear models adjusted for relevant covariates, we tested for interactions between six genetic variants previously found to be associated with O-methylascorbate and ascorbic acid 2-sulfate and four environmental variables related to diet (alcohol consumption frequency, smoking status, fruit consumption, and vegetable consumption). We also tested for interactions between serum concentrations of O-methylascorbate and ascorbic acid 2-sulfate and these environmental factors. We used a False Discovery Rate approach to correct for the 32 interaction tests performed. One interaction was suggestively significant after multiple testing correction (adjusted P-value < 0.1): rs8050812 and alcohol consumption frequency. Understanding how genetic variants and metabolites interact with the environment could shed light on biological pathways controlling IOP and lead to improved prevention and treatment of glaucoma.</p>","PeriodicalId":72427,"journal":{"name":"BMC genomic data","volume":"26 1","pages":"10"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776179/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC genomic data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12863-025-01301-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

High intraocular pressure (IOP) is an important risk factor for glaucoma, which is influenced by genetic and environmental factors. However, the etiology of high IOP remains uncertain. Metabolites are compounds involved in metabolism which provide a link between the internal (genetic) and external environments. O-methylascorbate has been reported to be associated with IOP. In addition, researchers have identified several genetic variants which are associated with metabolite concentrations, including O-methylascorbate and another vitamin C related metabolite, ascorbic acid 2-sulfate. We aimed to understand how O-methylascorbate and ascorbic acid 2-sulfate, or genetic variants associated with these metabolites, modify the associations between dietary environmental variables and IOP. We used data from 8060 participants of the Canadian Longitudinal Study on Aging. Using linear models adjusted for relevant covariates, we tested for interactions between six genetic variants previously found to be associated with O-methylascorbate and ascorbic acid 2-sulfate and four environmental variables related to diet (alcohol consumption frequency, smoking status, fruit consumption, and vegetable consumption). We also tested for interactions between serum concentrations of O-methylascorbate and ascorbic acid 2-sulfate and these environmental factors. We used a False Discovery Rate approach to correct for the 32 interaction tests performed. One interaction was suggestively significant after multiple testing correction (adjusted P-value < 0.1): rs8050812 and alcohol consumption frequency. Understanding how genetic variants and metabolites interact with the environment could shed light on biological pathways controlling IOP and lead to improved prevention and treatment of glaucoma.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信