From prediction to practice: mitigating bias and data shift in machine-learning models for chemotherapy-induced organ dysfunction across unseen cancers.

BMJ oncology Pub Date : 2024-11-02 eCollection Date: 2024-01-01 DOI:10.1136/bmjonc-2024-000430
Matthew Watson, Pinkie Chambers, Luke Steventon, James Harmsworth King, Angelo Ercia, Heather Shaw, Noura Al Moubayed
{"title":"From prediction to practice: mitigating bias and data shift in machine-learning models for chemotherapy-induced organ dysfunction across unseen cancers.","authors":"Matthew Watson, Pinkie Chambers, Luke Steventon, James Harmsworth King, Angelo Ercia, Heather Shaw, Noura Al Moubayed","doi":"10.1136/bmjonc-2024-000430","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Routine monitoring of renal and hepatic function during chemotherapy ensures that treatment-related organ damage has not occurred and clearance of subsequent treatment is not hindered; however, frequency and timing are not optimal. Model bias and data heterogeneity concerns have hampered the ability of machine learning (ML) to be deployed into clinical practice. This study aims to develop models that could support individualised decisions on the timing of renal and hepatic monitoring while exploring the effect of data shift on model performance.</p><p><strong>Methods and analysis: </strong>We used retrospective data from three UK hospitals to develop and validate ML models predicting unacceptable rises in creatinine/bilirubin post cycle 3 for patients undergoing treatment for the following cancers: breast, colorectal, lung, ovarian and diffuse large B-cell lymphoma.</p><p><strong>Results: </strong>We extracted 3614 patients with no missing blood test data across cycles 1-6 of chemotherapy treatment. We improved on previous work by including predictions post cycle 3. Optimised for sensitivity, we achieve F2 scores of 0.7773 (bilirubin) and 0.6893 (creatinine) on unseen data. Performance is consistent on tumour types unseen during training (F2 bilirubin: 0.7423, F2 creatinine: 0.6820).</p><p><strong>Conclusion: </strong>Our technique highlights the effectiveness of ML in clinical settings, demonstrating the potential to improve the delivery of care. Notably, our ML models can generalise to unseen tumour types. We propose gold-standard bias mitigation steps for ML models: evaluation on multisite data, thorough patient population analysis, and both formalised bias measures and model performance comparisons on patient subgroups. We demonstrate that data aggregation techniques have unintended consequences on model bias.</p>","PeriodicalId":72436,"journal":{"name":"BMJ oncology","volume":"3 1","pages":"e000430"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557724/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjonc-2024-000430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Routine monitoring of renal and hepatic function during chemotherapy ensures that treatment-related organ damage has not occurred and clearance of subsequent treatment is not hindered; however, frequency and timing are not optimal. Model bias and data heterogeneity concerns have hampered the ability of machine learning (ML) to be deployed into clinical practice. This study aims to develop models that could support individualised decisions on the timing of renal and hepatic monitoring while exploring the effect of data shift on model performance.

Methods and analysis: We used retrospective data from three UK hospitals to develop and validate ML models predicting unacceptable rises in creatinine/bilirubin post cycle 3 for patients undergoing treatment for the following cancers: breast, colorectal, lung, ovarian and diffuse large B-cell lymphoma.

Results: We extracted 3614 patients with no missing blood test data across cycles 1-6 of chemotherapy treatment. We improved on previous work by including predictions post cycle 3. Optimised for sensitivity, we achieve F2 scores of 0.7773 (bilirubin) and 0.6893 (creatinine) on unseen data. Performance is consistent on tumour types unseen during training (F2 bilirubin: 0.7423, F2 creatinine: 0.6820).

Conclusion: Our technique highlights the effectiveness of ML in clinical settings, demonstrating the potential to improve the delivery of care. Notably, our ML models can generalise to unseen tumour types. We propose gold-standard bias mitigation steps for ML models: evaluation on multisite data, thorough patient population analysis, and both formalised bias measures and model performance comparisons on patient subgroups. We demonstrate that data aggregation techniques have unintended consequences on model bias.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信