Philipp Thieme , Celine Reisser , Corinne Bouvier , Fabien Rieuvilleneuve , Philippe Béarez , Richard R. Coleman , Jean Jubrice Anissa Volanandiana , Esmeralda Pereira , Mauro Nirchio–Tursellino , María Inés Roldán , Sandra Heras , Nathalia Tirado-Sánchez , Eric Pulis , Fabien Leprieur , Jean-Dominique Durand
{"title":"Historical biogeography of the Mugil cephalus species complex and its rapid global colonization","authors":"Philipp Thieme , Celine Reisser , Corinne Bouvier , Fabien Rieuvilleneuve , Philippe Béarez , Richard R. Coleman , Jean Jubrice Anissa Volanandiana , Esmeralda Pereira , Mauro Nirchio–Tursellino , María Inés Roldán , Sandra Heras , Nathalia Tirado-Sánchez , Eric Pulis , Fabien Leprieur , Jean-Dominique Durand","doi":"10.1016/j.ympev.2025.108296","DOIUrl":null,"url":null,"abstract":"<div><div>Our understanding of speciation processes in marine environments remains very limited and the role of different reproductive barriers are still debated. While physical barriers were considered important drivers causing reproductive isolation, recent studies highlight the importance of climatic and hydrological changes creating unsuitable habitat conditions as factors promoting population isolation. Although speciation in marine fishes has been investigated from different perspectives, these studies often have a limited geographical extant. Therefore, data on speciation within widely distributed species are largely lacking. Species complexes offer valuable opportunities to study the initial stages of speciation. Herein we study speciation within the <em>Mugil cephalus</em> species complex (MCSC) which presents a unique opportunity due to its circumglobal distribution.</div><div>We used a whole-genome shotgun analysis approach to identify SNPs among the 16 species within the MCSC. We inferred the phylogenetic relationships within the species complex followed by a time-calibration analysis. Subsequently, we estimated the ancestral ranges within the species complex to explore their biogeographical history.</div><div>Herein, we present a fully resolved and well-supported phylogeny of the MCSC. Its origin is dated at around 3.79 Ma after which two main clades emerged: one comprising all West Atlantic and East Pacific species and the other all East Atlantic and Indo-Pacific species. Rapid dispersal following an initial founder colonization from the West to the East Atlantic led to the population of all major realms worldwide in less than 2 Myr. Physical and climatic barriers heavily impacted the ancestral distribution ranges within the MCSC and triggered the onset of speciation.</div></div>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":"205 ","pages":"Article 108296"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Phylogenetics and Evolution","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1055790325000132","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Our understanding of speciation processes in marine environments remains very limited and the role of different reproductive barriers are still debated. While physical barriers were considered important drivers causing reproductive isolation, recent studies highlight the importance of climatic and hydrological changes creating unsuitable habitat conditions as factors promoting population isolation. Although speciation in marine fishes has been investigated from different perspectives, these studies often have a limited geographical extant. Therefore, data on speciation within widely distributed species are largely lacking. Species complexes offer valuable opportunities to study the initial stages of speciation. Herein we study speciation within the Mugil cephalus species complex (MCSC) which presents a unique opportunity due to its circumglobal distribution.
We used a whole-genome shotgun analysis approach to identify SNPs among the 16 species within the MCSC. We inferred the phylogenetic relationships within the species complex followed by a time-calibration analysis. Subsequently, we estimated the ancestral ranges within the species complex to explore their biogeographical history.
Herein, we present a fully resolved and well-supported phylogeny of the MCSC. Its origin is dated at around 3.79 Ma after which two main clades emerged: one comprising all West Atlantic and East Pacific species and the other all East Atlantic and Indo-Pacific species. Rapid dispersal following an initial founder colonization from the West to the East Atlantic led to the population of all major realms worldwide in less than 2 Myr. Physical and climatic barriers heavily impacted the ancestral distribution ranges within the MCSC and triggered the onset of speciation.
期刊介绍:
Molecular Phylogenetics and Evolution is dedicated to bringing Darwin''s dream within grasp - to "have fairly true genealogical trees of each great kingdom of Nature." The journal provides a forum for molecular studies that advance our understanding of phylogeny and evolution, further the development of phylogenetically more accurate taxonomic classifications, and ultimately bring a unified classification for all the ramifying lines of life. Phylogeographic studies will be considered for publication if they offer EXCEPTIONAL theoretical or empirical advances.