María de la Paz Scribano Parada, Fátima González Palau, Sonia Valladares Rodríguez, Mariano Rincon, Maria José Rico Barroeta, Marta García Rodriguez, Yolanda Bueno Aguado, Ana Herrero Blanco, Estela Díaz-López, Margarita Bachiller Mayoral, Raquel Losada Durán
{"title":"Preclinical Cognitive Markers of Alzheimer Disease and Early Diagnosis Using Virtual Reality and Artificial Intelligence: Literature Review.","authors":"María de la Paz Scribano Parada, Fátima González Palau, Sonia Valladares Rodríguez, Mariano Rincon, Maria José Rico Barroeta, Marta García Rodriguez, Yolanda Bueno Aguado, Ana Herrero Blanco, Estela Díaz-López, Margarita Bachiller Mayoral, Raquel Losada Durán","doi":"10.2196/62914","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This review explores the potential of virtual reality (VR) and artificial intelligence (AI) to identify preclinical cognitive markers of Alzheimer disease (AD). By synthesizing recent studies, it aims to advance early diagnostic methods to detect AD before significant symptoms occur.</p><p><strong>Objective: </strong>Research emphasizes the significance of early detection in AD during the preclinical phase, which does not involve cognitive impairment but nevertheless requires reliable biomarkers. Current biomarkers face challenges, prompting the exploration of cognitive behavior indicators beyond episodic memory.</p><p><strong>Methods: </strong>Using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, we searched Scopus, PubMed, and Google Scholar for studies on neuropsychiatric disorders utilizing conversational data.</p><p><strong>Results: </strong>Following an analysis of 38 selected articles, we highlight verbal episodic memory as a sensitive preclinical AD marker, with supporting evidence from neuroimaging and genetic profiling. Executive functions precede memory decline, while processing speed is a significant correlate. The potential of VR remains underexplored, and AI algorithms offer a multidimensional approach to early neurocognitive disorder diagnosis.</p><p><strong>Conclusions: </strong>Emerging technologies like VR and AI show promise for preclinical diagnostics, but thorough validation and regulation for clinical safety and efficacy are necessary. Continued technological advancements are expected to enhance early detection and management of AD.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e62914"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/62914","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This review explores the potential of virtual reality (VR) and artificial intelligence (AI) to identify preclinical cognitive markers of Alzheimer disease (AD). By synthesizing recent studies, it aims to advance early diagnostic methods to detect AD before significant symptoms occur.
Objective: Research emphasizes the significance of early detection in AD during the preclinical phase, which does not involve cognitive impairment but nevertheless requires reliable biomarkers. Current biomarkers face challenges, prompting the exploration of cognitive behavior indicators beyond episodic memory.
Methods: Using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, we searched Scopus, PubMed, and Google Scholar for studies on neuropsychiatric disorders utilizing conversational data.
Results: Following an analysis of 38 selected articles, we highlight verbal episodic memory as a sensitive preclinical AD marker, with supporting evidence from neuroimaging and genetic profiling. Executive functions precede memory decline, while processing speed is a significant correlate. The potential of VR remains underexplored, and AI algorithms offer a multidimensional approach to early neurocognitive disorder diagnosis.
Conclusions: Emerging technologies like VR and AI show promise for preclinical diagnostics, but thorough validation and regulation for clinical safety and efficacy are necessary. Continued technological advancements are expected to enhance early detection and management of AD.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.