The Port-Hamiltonian Structure of Continuum Mechanics.

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Journal of Nonlinear Science Pub Date : 2025-01-01 Epub Date: 2025-01-28 DOI:10.1007/s00332-025-10130-1
Ramy Rashad, Stefano Stramigioli
{"title":"The Port-Hamiltonian Structure of Continuum Mechanics.","authors":"Ramy Rashad, Stefano Stramigioli","doi":"10.1007/s00332-025-10130-1","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we present a novel approach to the geometric formulation of solid and fluid mechanics within the port-Hamiltonian framework, which extends the standard Hamiltonian formulation to non-conservative and open dynamical systems. Leveraging Dirac structures, instead of symplectic or Poisson structures, this formalism allows the incorporation of energy exchange within the spatial domain or through its boundary, which allows for a more comprehensive description of continuum mechanics. Building upon our recent work in describing nonlinear elasticity using exterior calculus and bundle-valued differential forms, this paper focuses on the systematic derivation of port-Hamiltonian models for solid and fluid mechanics in the material, spatial, and convective representations using Hamiltonian reduction theory. This paper also discusses constitutive relations for stress within this framework including hyper-elasticity, for both finite and infinitesimal strains, as well as viscous fluid flow governed by the Navier-Stokes equations.</p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"35 2","pages":"35"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775082/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-025-10130-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a novel approach to the geometric formulation of solid and fluid mechanics within the port-Hamiltonian framework, which extends the standard Hamiltonian formulation to non-conservative and open dynamical systems. Leveraging Dirac structures, instead of symplectic or Poisson structures, this formalism allows the incorporation of energy exchange within the spatial domain or through its boundary, which allows for a more comprehensive description of continuum mechanics. Building upon our recent work in describing nonlinear elasticity using exterior calculus and bundle-valued differential forms, this paper focuses on the systematic derivation of port-Hamiltonian models for solid and fluid mechanics in the material, spatial, and convective representations using Hamiltonian reduction theory. This paper also discusses constitutive relations for stress within this framework including hyper-elasticity, for both finite and infinitesimal strains, as well as viscous fluid flow governed by the Navier-Stokes equations.

连续介质力学的port - hamilton结构。
在本文中,我们提出了一种在端口-哈密顿框架内的固体和流体力学几何公式的新方法,它将标准哈密顿公式推广到非保守和开放的动力系统。利用狄拉克结构,而不是辛或泊松结构,这种形式允许在空间域内或通过其边界合并能量交换,从而允许对连续介质力学进行更全面的描述。基于我们最近使用外部微积分和束值微分形式描述非线性弹性的工作,本文着重于使用哈密顿约化理论系统地推导固体和流体力学中材料、空间和对流表示的端口-哈密顿模型。本文还讨论了该框架下应力的本构关系,包括超弹性,有限和无穷小应变,以及由Navier-Stokes方程控制的粘性流体流动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.30%
发文量
87
审稿时长
4.5 months
期刊介绍: The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be. All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信