Blood-based DNA methylation markers for lung cancer prediction.

BMJ oncology Pub Date : 2024-05-30 eCollection Date: 2024-01-01 DOI:10.1136/bmjonc-2024-000334
Justina Ucheojor Onwuka, Florence Guida, Ryan Langdon, Mikael Johansson, Gianluca Severi, Roger L Milne, Pierre-Antoine Dugué, Melissa C Southey, Paolo Vineis, Torkjel Sandanger, Therese Haugdahl Nøst, Marc Chadeau-Hyam, Caroline Relton, Hilary A Robbins, Matthew Suderman, Mattias Johansson
{"title":"Blood-based DNA methylation markers for lung cancer prediction.","authors":"Justina Ucheojor Onwuka, Florence Guida, Ryan Langdon, Mikael Johansson, Gianluca Severi, Roger L Milne, Pierre-Antoine Dugué, Melissa C Southey, Paolo Vineis, Torkjel Sandanger, Therese Haugdahl Nøst, Marc Chadeau-Hyam, Caroline Relton, Hilary A Robbins, Matthew Suderman, Mattias Johansson","doi":"10.1136/bmjonc-2024-000334","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Screening high-risk individuals with low-dose CT reduces mortality from lung cancer, but many lung cancers occur in individuals who are not eligible for screening. Risk biomarkers may be useful to refine risk models and improve screening eligibility criteria. We evaluated if blood-based DNA methylation markers can improve a traditional lung cancer prediction model.</p><p><strong>Methods and analysis: </strong>This study used four prospective cohorts with blood samples collected prior to lung cancer diagnosis. The study was restricted to participants with a history of smoking, and one control was individually matched to each lung cancer case using incidence density sampling by cohort, sex, date of blood collection, age and smoking status. To train a DNA methylation-based risk score, we used participants from Melbourne Collaborative Cohort Study-Australia (n=648) and Northern Sweden Health and Disease Study-Sweden (n=380) based on five selected CpG sites. The risk discriminative performance of the methylation score was subsequently validated in participants from European Investigation into Cancer and Nutrition-Italy (n=267) and Norwegian Women and Cancer-Norway (n=185) and compared with that of the questionnaire-based PLCOm2012 lung cancer risk model.</p><p><strong>Results: </strong>The area under the receiver operating characteristic curve (AUC) for the PLCOm2012 model in the validation studies was 0.70 (95% CI: 0.65 to 0.75) compared with 0.73 (95% CI: 0.68 to 0.77) for the methylation score model (<i>P</i> <sub>difference</sub>=0.07). Incorporating the methylation score with the PLCOm2012 model did not improve the risk discrimination (AUC: 0.73, 95% CI: 0.68 to 0.77, <i>P</i> <sub>difference</sub>=0.73).</p><p><strong>Conclusions: </strong>This study suggests that the methylation-based risk prediction score alone provides similar lung cancer risk-discriminatory performance as the questionnaire-based PLCOm2012 risk model.</p>","PeriodicalId":72436,"journal":{"name":"BMJ oncology","volume":"3 1","pages":"e000334"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234992/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjonc-2024-000334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Screening high-risk individuals with low-dose CT reduces mortality from lung cancer, but many lung cancers occur in individuals who are not eligible for screening. Risk biomarkers may be useful to refine risk models and improve screening eligibility criteria. We evaluated if blood-based DNA methylation markers can improve a traditional lung cancer prediction model.

Methods and analysis: This study used four prospective cohorts with blood samples collected prior to lung cancer diagnosis. The study was restricted to participants with a history of smoking, and one control was individually matched to each lung cancer case using incidence density sampling by cohort, sex, date of blood collection, age and smoking status. To train a DNA methylation-based risk score, we used participants from Melbourne Collaborative Cohort Study-Australia (n=648) and Northern Sweden Health and Disease Study-Sweden (n=380) based on five selected CpG sites. The risk discriminative performance of the methylation score was subsequently validated in participants from European Investigation into Cancer and Nutrition-Italy (n=267) and Norwegian Women and Cancer-Norway (n=185) and compared with that of the questionnaire-based PLCOm2012 lung cancer risk model.

Results: The area under the receiver operating characteristic curve (AUC) for the PLCOm2012 model in the validation studies was 0.70 (95% CI: 0.65 to 0.75) compared with 0.73 (95% CI: 0.68 to 0.77) for the methylation score model (P difference=0.07). Incorporating the methylation score with the PLCOm2012 model did not improve the risk discrimination (AUC: 0.73, 95% CI: 0.68 to 0.77, P difference=0.73).

Conclusions: This study suggests that the methylation-based risk prediction score alone provides similar lung cancer risk-discriminatory performance as the questionnaire-based PLCOm2012 risk model.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信