{"title":"Modelling and analysis of an epidemic model with awareness caused by deaths due to fear.","authors":"Ling Xue, Junqi Huo, Yuxin Zhang","doi":"10.1080/17513758.2025.2458890","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we establish a compartmental model in which the transmission rate is associated with the fear of being infected by COVID-19. We provide a detailed analysis of the epidemic model and established results for the existence of a positively invariant set. The expression of the basic reproduction number <math><msub><mi>R</mi><mn>0</mn></msub></math> is characterized. It is shown that the disease-free equilibrium (DFE) is globally asymptotically stable if <math><msub><mi>R</mi><mn>0</mn></msub><mo><</mo><mn>1</mn></math>, and the system exhibits a forward bifurcation if <math><msub><mi>R</mi><mn>0</mn></msub><mo>=</mo><mn>1</mn></math>. When <math><msub><mi>R</mi><mn>0</mn></msub><mo>></mo><mn>1</mn></math>, the system is uniformly persistent, the DFE is unstable and there exists a unique and globally asymptotic stable endemic equilibrium (EE). We fit unknown parameters using the reported data in Canada from September 1 to October 10, 2021, and carry out sensitivity analysis. The quantitative analysis of the model with awareness demonstrates the significance of reducing the transmission rate and enhancing public protective awareness.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"19 1","pages":"2458890"},"PeriodicalIF":1.8000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2025.2458890","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we establish a compartmental model in which the transmission rate is associated with the fear of being infected by COVID-19. We provide a detailed analysis of the epidemic model and established results for the existence of a positively invariant set. The expression of the basic reproduction number is characterized. It is shown that the disease-free equilibrium (DFE) is globally asymptotically stable if , and the system exhibits a forward bifurcation if . When , the system is uniformly persistent, the DFE is unstable and there exists a unique and globally asymptotic stable endemic equilibrium (EE). We fit unknown parameters using the reported data in Canada from September 1 to October 10, 2021, and carry out sensitivity analysis. The quantitative analysis of the model with awareness demonstrates the significance of reducing the transmission rate and enhancing public protective awareness.
期刊介绍:
Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.