Modelling and analysis of an epidemic model with awareness caused by deaths due to fear.

IF 1.8 4区 数学 Q3 ECOLOGY
Journal of Biological Dynamics Pub Date : 2025-12-01 Epub Date: 2025-01-29 DOI:10.1080/17513758.2025.2458890
Ling Xue, Junqi Huo, Yuxin Zhang
{"title":"Modelling and analysis of an epidemic model with awareness caused by deaths due to fear.","authors":"Ling Xue, Junqi Huo, Yuxin Zhang","doi":"10.1080/17513758.2025.2458890","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we establish a compartmental model in which the transmission rate is associated with the fear of being infected by COVID-19. We provide a detailed analysis of the epidemic model and established results for the existence of a positively invariant set. The expression of the basic reproduction number <math><msub><mi>R</mi><mn>0</mn></msub></math> is characterized. It is shown that the disease-free equilibrium (DFE) is globally asymptotically stable if <math><msub><mi>R</mi><mn>0</mn></msub><mo><</mo><mn>1</mn></math>, and the system exhibits a forward bifurcation if <math><msub><mi>R</mi><mn>0</mn></msub><mo>=</mo><mn>1</mn></math>. When <math><msub><mi>R</mi><mn>0</mn></msub><mo>></mo><mn>1</mn></math>, the system is uniformly persistent, the DFE is unstable and there exists a unique and globally asymptotic stable endemic equilibrium (EE). We fit unknown parameters using the reported data in Canada from September 1 to October 10, 2021, and carry out sensitivity analysis. The quantitative analysis of the model with awareness demonstrates the significance of reducing the transmission rate and enhancing public protective awareness.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"19 1","pages":"2458890"},"PeriodicalIF":1.8000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2025.2458890","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish a compartmental model in which the transmission rate is associated with the fear of being infected by COVID-19. We provide a detailed analysis of the epidemic model and established results for the existence of a positively invariant set. The expression of the basic reproduction number R0 is characterized. It is shown that the disease-free equilibrium (DFE) is globally asymptotically stable if R0<1, and the system exhibits a forward bifurcation if R0=1. When R0>1, the system is uniformly persistent, the DFE is unstable and there exists a unique and globally asymptotic stable endemic equilibrium (EE). We fit unknown parameters using the reported data in Canada from September 1 to October 10, 2021, and carry out sensitivity analysis. The quantitative analysis of the model with awareness demonstrates the significance of reducing the transmission rate and enhancing public protective awareness.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Dynamics
Journal of Biological Dynamics ECOLOGY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.90
自引率
3.60%
发文量
28
审稿时长
33 weeks
期刊介绍: Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信