MiCML: a causal machine learning cloud platform for the analysis of treatment effects using microbiome profiles.

IF 4 3区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Hyunwook Koh, Jihun Kim, Hyojung Jang
{"title":"MiCML: a causal machine learning cloud platform for the analysis of treatment effects using microbiome profiles.","authors":"Hyunwook Koh, Jihun Kim, Hyojung Jang","doi":"10.1186/s13040-025-00422-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The treatment effects are heterogenous across patients due to the differences in their microbiomes, which in turn implies that we can enhance the treatment effect by manipulating the patient's microbiome profile. Then, the coadministration of microbiome-based dietary supplements/therapeutics along with the primary treatment has been the subject of intensive investigation. However, for this, we first need to comprehend which microbes help (or prevent) the treatment to cure the patient's disease.</p><p><strong>Results: </strong>In this paper, we introduce a cloud platform, named microbiome causal machine learning (MiCML), for the analysis of treatment effects using microbiome profiles on user-friendly web environments. MiCML is in particular unique with the up-to-date features of (i) batch effect correction to mitigate systematic variation in collective large-scale microbiome data due to the differences in their underlying batches, and (ii) causal machine learning to estimate treatment effects with consistency and then discern microbial taxa that enhance (or lower) the efficacy of the primary treatment. We also stress that MiCML can handle the data from either randomized controlled trials or observational studies.</p><p><strong>Conclusion: </strong>We describe MiCML as a useful analytic tool for microbiome-based personalized medicine. MiCML is freely available on our web server ( http://micml.micloud.kr ). MiCML can also be implemented locally on the user's computer through our GitHub repository ( https://github.com/hk1785/micml ).</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"18 1","pages":"10"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-025-00422-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The treatment effects are heterogenous across patients due to the differences in their microbiomes, which in turn implies that we can enhance the treatment effect by manipulating the patient's microbiome profile. Then, the coadministration of microbiome-based dietary supplements/therapeutics along with the primary treatment has been the subject of intensive investigation. However, for this, we first need to comprehend which microbes help (or prevent) the treatment to cure the patient's disease.

Results: In this paper, we introduce a cloud platform, named microbiome causal machine learning (MiCML), for the analysis of treatment effects using microbiome profiles on user-friendly web environments. MiCML is in particular unique with the up-to-date features of (i) batch effect correction to mitigate systematic variation in collective large-scale microbiome data due to the differences in their underlying batches, and (ii) causal machine learning to estimate treatment effects with consistency and then discern microbial taxa that enhance (or lower) the efficacy of the primary treatment. We also stress that MiCML can handle the data from either randomized controlled trials or observational studies.

Conclusion: We describe MiCML as a useful analytic tool for microbiome-based personalized medicine. MiCML is freely available on our web server ( http://micml.micloud.kr ). MiCML can also be implemented locally on the user's computer through our GitHub repository ( https://github.com/hk1785/micml ).

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biodata Mining
Biodata Mining MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
7.90
自引率
0.00%
发文量
28
审稿时长
23 weeks
期刊介绍: BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data. Topical areas include, but are not limited to: -Development, evaluation, and application of novel data mining and machine learning algorithms. -Adaptation, evaluation, and application of traditional data mining and machine learning algorithms. -Open-source software for the application of data mining and machine learning algorithms. -Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies. -Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信