A new HCM heart sound classification method based on weighted bispectrum features.

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Fang Yu, Huang Zhiyuan, Leng Hongxia, Dongbo Liu, Wang Weibo
{"title":"A new HCM heart sound classification method based on weighted bispectrum features.","authors":"Fang Yu, Huang Zhiyuan, Leng Hongxia, Dongbo Liu, Wang Weibo","doi":"10.1007/s13246-024-01506-w","DOIUrl":null,"url":null,"abstract":"<p><p>Hypertrophic cardiomyopathy (HCM), including obstructive HCM and non-obstructive HCM, can lead to sudden cardiac arrest in adolescents and athletes. Early diagnosis and treatment through auscultation of different types of HCM can prevent the occurrence of malignant events. However, it is challenging to distinguish the pathological information of HCM related to differential left ventricular outflow tract pressure gradients. To address this issue, a classification method based on weighted bispectrum features of heart sounds (HSs) is proposed for efficient and cost-effective HCM analysis. Preprocessing is first applied to remove background noise during HS acquisition. Then, the bispectrum contour map is calculated, and 56-dimensional features are extracted to represent the pathological information of HCM. Next, an adaptive threshold weighting mutual information method is proposed for feature selection and weighted fusion. Finally, the CNN-RF classifier model is built to automatically identify different types of HCM cases. A clinical dataset of normal and two types of HCM HSs is utilized for validation. The results show that the proposed method performs well, with a classification accuracy reaching 94.4%. It provides a reliable reference for HCM diagnosis in young patients in clinical settings.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01506-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hypertrophic cardiomyopathy (HCM), including obstructive HCM and non-obstructive HCM, can lead to sudden cardiac arrest in adolescents and athletes. Early diagnosis and treatment through auscultation of different types of HCM can prevent the occurrence of malignant events. However, it is challenging to distinguish the pathological information of HCM related to differential left ventricular outflow tract pressure gradients. To address this issue, a classification method based on weighted bispectrum features of heart sounds (HSs) is proposed for efficient and cost-effective HCM analysis. Preprocessing is first applied to remove background noise during HS acquisition. Then, the bispectrum contour map is calculated, and 56-dimensional features are extracted to represent the pathological information of HCM. Next, an adaptive threshold weighting mutual information method is proposed for feature selection and weighted fusion. Finally, the CNN-RF classifier model is built to automatically identify different types of HCM cases. A clinical dataset of normal and two types of HCM HSs is utilized for validation. The results show that the proposed method performs well, with a classification accuracy reaching 94.4%. It provides a reliable reference for HCM diagnosis in young patients in clinical settings.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信