Directed evolution of peroxidase DNAzymes by a function-based approach.

IF 2.5 Q3 BIOCHEMICAL RESEARCH METHODS
Biology Methods and Protocols Pub Date : 2024-12-13 eCollection Date: 2025-01-01 DOI:10.1093/biomethods/bpae088
Soubhagya K Bhuyan, Weisi He, Jingyu Cui, Julian A Tanner
{"title":"Directed evolution of peroxidase DNAzymes by a function-based approach.","authors":"Soubhagya K Bhuyan, Weisi He, Jingyu Cui, Julian A Tanner","doi":"10.1093/biomethods/bpae088","DOIUrl":null,"url":null,"abstract":"<p><p>Peroxidase DNAzymes are single-stranded, stable G-quadruplexes structures that exhibit catalytic activity with cofactor hemin. This class of DNAzymes offers several advantages over traditional protein and RNA catalysts, including thermal stability, resistance to hydrolysis, and easy of synthesis in the laboratory. However, their use in medicine, biology, and chemistry is limited due to their low catalytic rates. Selecting and evolving for higher catalytic rates has been challenging due to limitations in selection methodology which generally use affinity as the selection pressure instead of kinetics. We previously evolved a new peroxidase DNAzyme (mSBDZ-X-3) through a directed evolution method, which was subsequently used for proximity labelling in a proteomic experiment in cell culture. Herein, we present a detailed protocol for this function-based laboratory evolution method to evolve peroxidase DNAzymes for future laboratory implementation. This approach is based on capturing self-biotinylated DNA, which is catalyzed by intrinsic peroxidase activity to select for DNAzyme molecules. The selection method uses fluorescence-based real-time monitoring of the DNA pools, allowing for the enrichment of catalytic activity and capture of catalytic DNA across evolutionary selection rounds. The evolved mSBDZ-X-3 DNAzyme attributes parallel G-quadruplex structure and demonstrates better catalytic properties than DNAzyme variants evolved previously. The influence of critical reaction parameters is outlined. This protocol enables discovery of improved peroxidase DNAzyme/RNAzyme variants from natural or chemical-modified nucleotide libraries. The approach could be applicable for the selection of catalytic activities in a variety of directed molecular evolution contexts.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"10 1","pages":"bpae088"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780874/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomethods/bpae088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Peroxidase DNAzymes are single-stranded, stable G-quadruplexes structures that exhibit catalytic activity with cofactor hemin. This class of DNAzymes offers several advantages over traditional protein and RNA catalysts, including thermal stability, resistance to hydrolysis, and easy of synthesis in the laboratory. However, their use in medicine, biology, and chemistry is limited due to their low catalytic rates. Selecting and evolving for higher catalytic rates has been challenging due to limitations in selection methodology which generally use affinity as the selection pressure instead of kinetics. We previously evolved a new peroxidase DNAzyme (mSBDZ-X-3) through a directed evolution method, which was subsequently used for proximity labelling in a proteomic experiment in cell culture. Herein, we present a detailed protocol for this function-based laboratory evolution method to evolve peroxidase DNAzymes for future laboratory implementation. This approach is based on capturing self-biotinylated DNA, which is catalyzed by intrinsic peroxidase activity to select for DNAzyme molecules. The selection method uses fluorescence-based real-time monitoring of the DNA pools, allowing for the enrichment of catalytic activity and capture of catalytic DNA across evolutionary selection rounds. The evolved mSBDZ-X-3 DNAzyme attributes parallel G-quadruplex structure and demonstrates better catalytic properties than DNAzyme variants evolved previously. The influence of critical reaction parameters is outlined. This protocol enables discovery of improved peroxidase DNAzyme/RNAzyme variants from natural or chemical-modified nucleotide libraries. The approach could be applicable for the selection of catalytic activities in a variety of directed molecular evolution contexts.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology Methods and Protocols
Biology Methods and Protocols Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.80
自引率
2.80%
发文量
28
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信