Signalling and social learning in swarms of robots.

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Leo Cazenille, Maxime Toquebiau, Nicolas Lobato-Dauzier, Alessia Loi, Loona Macabre, Nathanaël Aubert-Kato, Anthony J Genot, Nicolas Bredeche
{"title":"Signalling and social learning in swarms of robots.","authors":"Leo Cazenille, Maxime Toquebiau, Nicolas Lobato-Dauzier, Alessia Loi, Loona Macabre, Nathanaël Aubert-Kato, Anthony J Genot, Nicolas Bredeche","doi":"10.1098/rsta.2024.0148","DOIUrl":null,"url":null,"abstract":"<p><p>This paper investigates the role of communication in improving coordination within robot swarms, focusing on a paradigm where learning and execution occur simultaneously in a decentralized manner. We highlight the role communication can play in addressing the credit assignment problem (individual contribution to the overall performance), and how it can be influenced by it. We propose a taxonomy of existing and future works on communication, focusing on information selection and physical abstraction as principal axes for classification: from low-level lossless compression with raw signal extraction and processing to high-level lossy compression with structured communication models. The paper reviews current research from evolutionary robotics, multi-agent (deep) reinforcement learning, language models and biophysics models to outline the challenges and opportunities of communication in a collective of robots that continuously learn from one another through local message exchanges, illustrating a form of social learning.This article is part of the theme issue 'The road forward with swarm systems'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2289","pages":"20240148"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789943/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0148","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the role of communication in improving coordination within robot swarms, focusing on a paradigm where learning and execution occur simultaneously in a decentralized manner. We highlight the role communication can play in addressing the credit assignment problem (individual contribution to the overall performance), and how it can be influenced by it. We propose a taxonomy of existing and future works on communication, focusing on information selection and physical abstraction as principal axes for classification: from low-level lossless compression with raw signal extraction and processing to high-level lossy compression with structured communication models. The paper reviews current research from evolutionary robotics, multi-agent (deep) reinforcement learning, language models and biophysics models to outline the challenges and opportunities of communication in a collective of robots that continuously learn from one another through local message exchanges, illustrating a form of social learning.This article is part of the theme issue 'The road forward with swarm systems'.

机器人群中的信号和社会学习。
本文研究了沟通在改善机器人群体协调中的作用,重点研究了学习和执行以分散的方式同时发生的范式。我们强调沟通在解决信用分配问题(个人对整体绩效的贡献)中可以发挥的作用,以及它如何受到它的影响。我们提出了一种现有和未来通信工作的分类法,重点关注信息选择和物理抽象作为分类的主轴:从原始信号提取和处理的低级无损压缩到结构化通信模型的高级有损压缩。本文回顾了进化机器人、多智能体(深度)强化学习、语言模型和生物物理模型的最新研究,概述了通过本地信息交换不断相互学习的机器人群体中的交流挑战和机遇,说明了一种社会学习形式。本文是“群系统的前进之路”主题的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信