Rolling horizon coverage control with collaborative autonomous agents.

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Savvas Papaioannou, Panayiotis Kolios, Theocharis Theocharides, Christos G Panayiotou, Marios M Polycarpou
{"title":"Rolling horizon coverage control with collaborative autonomous agents.","authors":"Savvas Papaioannou, Panayiotis Kolios, Theocharis Theocharides, Christos G Panayiotou, Marios M Polycarpou","doi":"10.1098/rsta.2024.0146","DOIUrl":null,"url":null,"abstract":"<p><p>This work proposes a coverage controller that enables an aerial team of distributed autonomous agents to collaboratively generate non-myopic coverage plans over a rolling finite horizon, aiming to cover specific points on the surface area of a three-dimensional object of interest. The collaborative coverage problem, formulated as a distributed model predictive control problem, optimizes the agents' motion and camera control inputs, while considering inter-agent constraints aiming at reducing work redundancy. The proposed coverage controller integrates constraints based on light-path propagation techniques to predict the parts of the object's surface that are visible with regard to the agents' future anticipated states. This work also demonstrates how complex, non-linear visibility assessment constraints can be converted into logical expressions that are embedded as binary constraints into a mixed-integer optimization framework. The proposed approach has been demonstrated through simulations and practical applications for inspecting buildings with unmanned aerial vehicles (UAVs).This article is part of the theme issue 'The road forward with swarm systems'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2289","pages":"20240146"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0146","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes a coverage controller that enables an aerial team of distributed autonomous agents to collaboratively generate non-myopic coverage plans over a rolling finite horizon, aiming to cover specific points on the surface area of a three-dimensional object of interest. The collaborative coverage problem, formulated as a distributed model predictive control problem, optimizes the agents' motion and camera control inputs, while considering inter-agent constraints aiming at reducing work redundancy. The proposed coverage controller integrates constraints based on light-path propagation techniques to predict the parts of the object's surface that are visible with regard to the agents' future anticipated states. This work also demonstrates how complex, non-linear visibility assessment constraints can be converted into logical expressions that are embedded as binary constraints into a mixed-integer optimization framework. The proposed approach has been demonstrated through simulations and practical applications for inspecting buildings with unmanned aerial vehicles (UAVs).This article is part of the theme issue 'The road forward with swarm systems'.

协同自主代理的滚动地平线覆盖控制。
这项工作提出了一种覆盖控制器,使分布式自主代理的空中团队能够在滚动的有限视界上协作生成非近视覆盖计划,旨在覆盖感兴趣的三维物体表面的特定点。协作覆盖问题将其表述为分布式模型预测控制问题,优化智能体的运动和摄像机控制输入,同时考虑智能体之间的约束,以减少工作冗余。所提出的覆盖控制器集成了基于光路传播技术的约束,以根据智能体的未来预期状态来预测物体表面可见的部分。这项工作还演示了如何将复杂的非线性可见性评估约束转换为逻辑表达式,并将其作为二进制约束嵌入到混合整数优化框架中。该方法已通过仿真和无人机对建筑物进行检测的实际应用进行了验证。本文是“群系统的前进之路”主题的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信