Machine teaching in Swarm Metaverse under different levels of autonomy.

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Aya Hussein, Hung Nguyen, Hussein A Abbass
{"title":"Machine teaching in Swarm Metaverse under different levels of autonomy.","authors":"Aya Hussein, Hung Nguyen, Hussein A Abbass","doi":"10.1098/rsta.2024.0149","DOIUrl":null,"url":null,"abstract":"<p><p>Shepherding algorithms enable scalable swarm control via the utilization of one or a few control agents. Despite their demonstrated effectiveness in controlling swarms of point-particle agents, shepherding algorithms have been barely evaluated in controlling realistic swarms of uncrewed vehicles (UxVs). Furthermore, existing shepherding algorithms face significant challenges in dealing with complex environments such as those featuring obstacles. We address these research gaps by studying the use of human demonstrations for teaching herding behaviours to machine learning controllers. In particular, we focus on how the level of autonomy used for collecting human demonstrations affects the effectiveness of the resulting swarm controller performance. Our experimental investigation shows that demonstrations collected under a high level of autonomy result in a significantly higher success rate than those collected under a low level of autonomy. Our findings highlight that providing high-level commands for the human demonstrator is more effective even when the demonstrations is used for training a low-level controller.This article is part of the theme issue 'The road forward with swarm systems'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2289","pages":"20240149"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0149","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Shepherding algorithms enable scalable swarm control via the utilization of one or a few control agents. Despite their demonstrated effectiveness in controlling swarms of point-particle agents, shepherding algorithms have been barely evaluated in controlling realistic swarms of uncrewed vehicles (UxVs). Furthermore, existing shepherding algorithms face significant challenges in dealing with complex environments such as those featuring obstacles. We address these research gaps by studying the use of human demonstrations for teaching herding behaviours to machine learning controllers. In particular, we focus on how the level of autonomy used for collecting human demonstrations affects the effectiveness of the resulting swarm controller performance. Our experimental investigation shows that demonstrations collected under a high level of autonomy result in a significantly higher success rate than those collected under a low level of autonomy. Our findings highlight that providing high-level commands for the human demonstrator is more effective even when the demonstrations is used for training a low-level controller.This article is part of the theme issue 'The road forward with swarm systems'.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信