Yinhsuan Michely Chen, Julien Chambon, Alexandre Moquin, Masakazu Hashimoto, Stephanie Perrino, Matthew Leibovitch, Yasmine Benslimane, Orçun Haçariz, Qin Yang, Ichiro Nakano, Brian Meehan, Janusz Rak, Stéphane Gagné, Pnina Brodt
{"title":"Nanoparticle encapsulation enables systemic IGF-Trap delivery to inhibit intracerebral glioma growth.","authors":"Yinhsuan Michely Chen, Julien Chambon, Alexandre Moquin, Masakazu Hashimoto, Stephanie Perrino, Matthew Leibovitch, Yasmine Benslimane, Orçun Haçariz, Qin Yang, Ichiro Nakano, Brian Meehan, Janusz Rak, Stéphane Gagné, Pnina Brodt","doi":"10.1093/neuonc/noaf011","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glioblastoma is an aggressive brain cancer with a 5-year survival rate of 5-10%. Current therapeutic options are limited, due in part to drug exclusion by the blood-brain barrier, restricting access of targeted drugs to the tumor. The receptor for the type 1 insulin-like growth factor (IGF-1R) was identified as a therapeutic target in glioblastoma. We previously reported that the intracerebral growth of glioma cells with reduced IGF-1R levels was inhibited. The objectives of this study were to evaluate the sensitivity of glioma cells to a novel IGF-axis inhibitor, the IGF-Trap, and optimize its delivery to the brain.</p><p><strong>Methods: </strong>We tested the effect of the IGF-Trap on the growth of the human glioma stem cells MES-1123 and U87 MG cells, and of murine GL261 cells in vivo, using subcutaneous and orthotopic implantation.</p><p><strong>Results: </strong>We show that the growth of glioma cells implanted subcutaneously or orthotopically in the brain was inhibited by systemic and direct intracerebral administration of IGF-Trap, respectively, resulting in increased survival. To increase the efficiency of systemic delivery to the brain, we encapsulated the IGF-Trap in trimethyl chitosan (TRIOZAN™) nanoparticles prior to intravenous injection. We found that nanoparticle encapsulation increased the uptake and retention of the IGF-Trap in the brain and resulted in an improved therapeutic effect against intra-cerebrally growing tumors.</p><p><strong>Conclusion: </strong>Our results identify the IGF-Trap as a potent inhibitor of intracerebral glioma growth and show that encapsulation in nanoparticles can improve delivery of biologics such as the IGF-Trap to the brain, thereby enhancing the therapeutic response.</p>","PeriodicalId":19377,"journal":{"name":"Neuro-oncology","volume":" ","pages":"1227-1240"},"PeriodicalIF":16.4000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187454/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/neuonc/noaf011","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Glioblastoma is an aggressive brain cancer with a 5-year survival rate of 5-10%. Current therapeutic options are limited, due in part to drug exclusion by the blood-brain barrier, restricting access of targeted drugs to the tumor. The receptor for the type 1 insulin-like growth factor (IGF-1R) was identified as a therapeutic target in glioblastoma. We previously reported that the intracerebral growth of glioma cells with reduced IGF-1R levels was inhibited. The objectives of this study were to evaluate the sensitivity of glioma cells to a novel IGF-axis inhibitor, the IGF-Trap, and optimize its delivery to the brain.
Methods: We tested the effect of the IGF-Trap on the growth of the human glioma stem cells MES-1123 and U87 MG cells, and of murine GL261 cells in vivo, using subcutaneous and orthotopic implantation.
Results: We show that the growth of glioma cells implanted subcutaneously or orthotopically in the brain was inhibited by systemic and direct intracerebral administration of IGF-Trap, respectively, resulting in increased survival. To increase the efficiency of systemic delivery to the brain, we encapsulated the IGF-Trap in trimethyl chitosan (TRIOZAN™) nanoparticles prior to intravenous injection. We found that nanoparticle encapsulation increased the uptake and retention of the IGF-Trap in the brain and resulted in an improved therapeutic effect against intra-cerebrally growing tumors.
Conclusion: Our results identify the IGF-Trap as a potent inhibitor of intracerebral glioma growth and show that encapsulation in nanoparticles can improve delivery of biologics such as the IGF-Trap to the brain, thereby enhancing the therapeutic response.
期刊介绍:
Neuro-Oncology, the official journal of the Society for Neuro-Oncology, has been published monthly since January 2010. Affiliated with the Japan Society for Neuro-Oncology and the European Association of Neuro-Oncology, it is a global leader in the field.
The journal is committed to swiftly disseminating high-quality information across all areas of neuro-oncology. It features peer-reviewed articles, reviews, symposia on various topics, abstracts from annual meetings, and updates from neuro-oncology societies worldwide.