Jack Breen, Katie Allen, Kieran Zucker, Lucy Godson, Nicolas M Orsi, Nishant Ravikumar
{"title":"A comprehensive evaluation of histopathology foundation models for ovarian cancer subtype classification.","authors":"Jack Breen, Katie Allen, Kieran Zucker, Lucy Godson, Nicolas M Orsi, Nishant Ravikumar","doi":"10.1038/s41698-025-00799-8","DOIUrl":null,"url":null,"abstract":"<p><p>Histopathology foundation models show great promise across many tasks, but analyses have been limited by arbitrary hyperparameters. We report the most rigorous single-task validation study to date, specifically in the context of ovarian carcinoma morphological subtyping. Attention-based multiple instance learning classifiers were compared using three ImageNet-pretrained encoders and fourteen foundation models, each trained with 1864 whole slide images and validated through hold-out testing and two external validations (the Transcanadian Study and OCEAN Challenge). The best-performing classifier used the H-optimus-0 foundation model, with balanced accuracies of 89%, 97%, and 74%, though UNI achieved similar results at a quarter of the computational cost. Hyperparameter tuning the classifiers improved performance by a median 1.9% balanced accuracy, with many improvements being statistically significant. Foundation models improve classification performance and may allow for clinical utility, with models providing a second opinion in challenging cases and potentially improving the accuracy and efficiency of diagnoses.</p>","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":"9 1","pages":"33"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782474/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41698-025-00799-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Histopathology foundation models show great promise across many tasks, but analyses have been limited by arbitrary hyperparameters. We report the most rigorous single-task validation study to date, specifically in the context of ovarian carcinoma morphological subtyping. Attention-based multiple instance learning classifiers were compared using three ImageNet-pretrained encoders and fourteen foundation models, each trained with 1864 whole slide images and validated through hold-out testing and two external validations (the Transcanadian Study and OCEAN Challenge). The best-performing classifier used the H-optimus-0 foundation model, with balanced accuracies of 89%, 97%, and 74%, though UNI achieved similar results at a quarter of the computational cost. Hyperparameter tuning the classifiers improved performance by a median 1.9% balanced accuracy, with many improvements being statistically significant. Foundation models improve classification performance and may allow for clinical utility, with models providing a second opinion in challenging cases and potentially improving the accuracy and efficiency of diagnoses.
期刊介绍:
Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.