Extracellular Vesicles Released by Glioblastoma Cancer Cells Drive Tumor Invasiveness via Connexin-43 Gap Junctions.

IF 16.4 1区 医学 Q1 CLINICAL NEUROLOGY
Matteo Tamborini, Valentino Ribecco, Elisabetta Stanzani, Arianna Sironi, Monica Tambalo, Davide Franzone, Elena Florio, Edoardo Fraviga, Chiara Saulle, Maria C Gagliani, Marco Pizzocri, Milena Mattioli, Katia Cortese, Jean X Jiang, Giuseppe Martano, Letterio S Politi, Marco Riva, Federico Pessina, Davide Pozzi, Simona Lodato, Lorena Passoni, Michela Matteoli
{"title":"Extracellular Vesicles Released by Glioblastoma Cancer Cells Drive Tumor Invasiveness via Connexin-43 Gap Junctions.","authors":"Matteo Tamborini, Valentino Ribecco, Elisabetta Stanzani, Arianna Sironi, Monica Tambalo, Davide Franzone, Elena Florio, Edoardo Fraviga, Chiara Saulle, Maria C Gagliani, Marco Pizzocri, Milena Mattioli, Katia Cortese, Jean X Jiang, Giuseppe Martano, Letterio S Politi, Marco Riva, Federico Pessina, Davide Pozzi, Simona Lodato, Lorena Passoni, Michela Matteoli","doi":"10.1093/neuonc/noaf013","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Although invasiveness is one of the major determinants of the poor glioblastoma (GBM) outcome, the mechanisms of GBM invasion are only partially understood. Among the intrinsic and environmental processes promoting cell-to-cell interaction processes, eventually driving GBM invasion, we focused on the pro-invasive role played by Extracellular Vesicles (EVs), a heterogeneous group of cell-released membranous structures containing various bioactive cargoes, which can be transferred from donor to recipient cells.</p><p><strong>Methods: </strong>EVs isolated from patient-derived GBM cell lines and surgical aspirates were assessed for their pro-migratory competence by spheroid migration assays, calcium imaging, and PYK-2/FAK phosphorylation. Brain invasiveness was investigated in human cortical organoids-based assembloids and in vivo orthotopic xenografts. EV molecular features were specified by multiplex bead-based flow cytometry.</p><p><strong>Results: </strong>Results unveil a self-sustaining mechanism triggering migration through autocrine release and engagement of a specific population of EVs of large size (L-EVs), isolated from either patient-derived cell lines or surgical aspirates. L-EVs act through modulation of calcium transients via Connexin 43-Gap Junctions (Cx43-GJ) and phospho-activation of PYK2. Pre-incubation with blocking antibodies targeting Cx43 hemichannels demonstrated a dose-dependent inhibition of the L-EV-mediated GBM migration. By exploiting patients' surgical aspirates, we show that only L-EVs deriving from tumoral cells, and not those with immune origin, promote tumor migration, impacting more prominently the tumoral cells with mesenchymal subtype.</p><p><strong>Conclusions: </strong>We demonstrate that L-EVs released by GBM cells, but not by the immune cells of the tumor microenvironment, represent a relevant and unique autocrine pro-migratory input for the tumor.</p>","PeriodicalId":19377,"journal":{"name":"Neuro-oncology","volume":" ","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/neuonc/noaf013","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Although invasiveness is one of the major determinants of the poor glioblastoma (GBM) outcome, the mechanisms of GBM invasion are only partially understood. Among the intrinsic and environmental processes promoting cell-to-cell interaction processes, eventually driving GBM invasion, we focused on the pro-invasive role played by Extracellular Vesicles (EVs), a heterogeneous group of cell-released membranous structures containing various bioactive cargoes, which can be transferred from donor to recipient cells.

Methods: EVs isolated from patient-derived GBM cell lines and surgical aspirates were assessed for their pro-migratory competence by spheroid migration assays, calcium imaging, and PYK-2/FAK phosphorylation. Brain invasiveness was investigated in human cortical organoids-based assembloids and in vivo orthotopic xenografts. EV molecular features were specified by multiplex bead-based flow cytometry.

Results: Results unveil a self-sustaining mechanism triggering migration through autocrine release and engagement of a specific population of EVs of large size (L-EVs), isolated from either patient-derived cell lines or surgical aspirates. L-EVs act through modulation of calcium transients via Connexin 43-Gap Junctions (Cx43-GJ) and phospho-activation of PYK2. Pre-incubation with blocking antibodies targeting Cx43 hemichannels demonstrated a dose-dependent inhibition of the L-EV-mediated GBM migration. By exploiting patients' surgical aspirates, we show that only L-EVs deriving from tumoral cells, and not those with immune origin, promote tumor migration, impacting more prominently the tumoral cells with mesenchymal subtype.

Conclusions: We demonstrate that L-EVs released by GBM cells, but not by the immune cells of the tumor microenvironment, represent a relevant and unique autocrine pro-migratory input for the tumor.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuro-oncology
Neuro-oncology 医学-临床神经学
CiteScore
27.20
自引率
6.30%
发文量
1434
审稿时长
3-8 weeks
期刊介绍: Neuro-Oncology, the official journal of the Society for Neuro-Oncology, has been published monthly since January 2010. Affiliated with the Japan Society for Neuro-Oncology and the European Association of Neuro-Oncology, it is a global leader in the field. The journal is committed to swiftly disseminating high-quality information across all areas of neuro-oncology. It features peer-reviewed articles, reviews, symposia on various topics, abstracts from annual meetings, and updates from neuro-oncology societies worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信