Predicting the Price of Molecules Using Their Predicted Synthetic Pathways.

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL
Massina Abderrahmane, Hamza Tajmouati, Vinicius Barros Ribeiro da Silva, Quentin Perron
{"title":"Predicting the Price of Molecules Using Their Predicted Synthetic Pathways.","authors":"Massina Abderrahmane, Hamza Tajmouati, Vinicius Barros Ribeiro da Silva, Quentin Perron","doi":"10.1002/minf.202400039","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, numerous metrics allow chemists and computational chemists to refine and filter libraries of virtual molecules in order to prioritize their synthesis. Some of the most commonly used metrics and models are QSAR models, docking scores, diverse druggability metrics, and synthetic feasibility scores to name only a few. To our knowledge, among the known metrics, a function which estimates the price of a novel virtual molecule and which takes into account the availability and price of starting materials has not been considered before in literature. Being able to make such a prediction could improve and accelerate the decision-making process related to the cost-of-goods. Taking advantage of recent advances in the field of Computer Aided Synthetic Planning (CASP), we decided to investigate if the predicted retrosynthetic pathways of a given molecule and the prices of its associated starting materials could be good features to predict the price of that compound. In this work, we present a deep learning model, RetroPriceNet, that predicts the price of molecules using their predicted synthetic pathways. On a holdout test set, the model achieves better performance than the state-of-the-art model. The developed approach takes into account the synthetic feasibility of molecules and the availability and prices of the starting materials.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"44 2","pages":"e202400039"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400039","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, numerous metrics allow chemists and computational chemists to refine and filter libraries of virtual molecules in order to prioritize their synthesis. Some of the most commonly used metrics and models are QSAR models, docking scores, diverse druggability metrics, and synthetic feasibility scores to name only a few. To our knowledge, among the known metrics, a function which estimates the price of a novel virtual molecule and which takes into account the availability and price of starting materials has not been considered before in literature. Being able to make such a prediction could improve and accelerate the decision-making process related to the cost-of-goods. Taking advantage of recent advances in the field of Computer Aided Synthetic Planning (CASP), we decided to investigate if the predicted retrosynthetic pathways of a given molecule and the prices of its associated starting materials could be good features to predict the price of that compound. In this work, we present a deep learning model, RetroPriceNet, that predicts the price of molecules using their predicted synthetic pathways. On a holdout test set, the model achieves better performance than the state-of-the-art model. The developed approach takes into account the synthetic feasibility of molecules and the availability and prices of the starting materials.

利用预测的合成途径预测分子的价格。
目前,许多指标允许化学家和计算化学家精炼和过滤虚拟分子库,以便优先考虑它们的合成。一些最常用的指标和模型是QSAR模型、对接评分、多种药物可药性指标和合成可行性评分等。据我们所知,在已知的指标中,估计新型虚拟分子价格并考虑到起始材料的可用性和价格的函数在文献中尚未被考虑过。能够做出这样的预测可以改善和加快与货物成本有关的决策过程。利用计算机辅助合成计划(CASP)领域的最新进展,我们决定研究给定分子的预测反合成途径及其相关起始材料的价格是否可以作为预测该化合物价格的良好特征。在这项工作中,我们提出了一个深度学习模型RetroPriceNet,该模型使用预测的合成途径来预测分子的价格。在holdout测试集上,该模型比最先进的模型实现了更好的性能。所开发的方法考虑了分子合成的可行性以及起始材料的可用性和价格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信