Integration of MRI radiomics and clinical data for preoperative prediction of vascular invasion in breast cancer: A deep learning approach

IF 2.1 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Guihai Pan , Zejun Pan , Wubiao Chen , Yongjun Wu , Xiaoqing Di , Fei Zhou , Yuting Liao
{"title":"Integration of MRI radiomics and clinical data for preoperative prediction of vascular invasion in breast cancer: A deep learning approach","authors":"Guihai Pan ,&nbsp;Zejun Pan ,&nbsp;Wubiao Chen ,&nbsp;Yongjun Wu ,&nbsp;Xiaoqing Di ,&nbsp;Fei Zhou ,&nbsp;Yuting Liao","doi":"10.1016/j.mri.2025.110339","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Accurate preoperative prediction of vascular invasion in breast cancer is crucial for surgical planning and patient management. MRI radiomics has shown promise in enhancing diagnostic precision. This study aims to evaluate the effectiveness of integrating MRI radiomic features with clinical data using a deep learning approach to predict vascular invasion in breast cancer patients.</div></div><div><h3>Methods</h3><div>A retrospective analysis was conducted on 102 patients with invasive breast cancer confirmed by surgical pathology. Using the MR750 3.0 T as the examination device, the subject underwent the examination in standard breast positions and sequences. Diffusion-weighted imaging (DWI) was performed with two selected b-values, specifically 0 and 1000 s/mm<sup>2</sup>. Following the injection of the contrast agent, dynamic scans were conducted across six phases, and delayed phase sagittal images were acquired using the VIBRANT sequence. Texture features were extracted from MRI images, and key radiomic and clinical features were selected using variance thresholding, correlation filtering, and logistic regression. A predictive model was developed combining these features, and its performance was evaluated through sensitivity, specificity, and area under the curve (AUC) metrics.</div></div><div><h3>Results</h3><div>The univariate models based on individual MRI sequences or clinical data demonstrated variable diagnostic performance. In contrast, the multifactorial model that combined radiomic features with clinical data achieved significantly higher accuracy, with an AUC of 0.829, sensitivity of 76.9 %, and specificity of 83.3 %.</div></div><div><h3>Conclusion</h3><div>Integrating MRI radiomics and clinical data enhances the preoperative prediction of vascular invasion in breast cancer. This approach can improve diagnostic accuracy, providing valuable insights for clinical decision-making and personalized treatment strategies.</div></div>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":"118 ","pages":"Article 110339"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0730725X25000219","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Accurate preoperative prediction of vascular invasion in breast cancer is crucial for surgical planning and patient management. MRI radiomics has shown promise in enhancing diagnostic precision. This study aims to evaluate the effectiveness of integrating MRI radiomic features with clinical data using a deep learning approach to predict vascular invasion in breast cancer patients.

Methods

A retrospective analysis was conducted on 102 patients with invasive breast cancer confirmed by surgical pathology. Using the MR750 3.0 T as the examination device, the subject underwent the examination in standard breast positions and sequences. Diffusion-weighted imaging (DWI) was performed with two selected b-values, specifically 0 and 1000 s/mm2. Following the injection of the contrast agent, dynamic scans were conducted across six phases, and delayed phase sagittal images were acquired using the VIBRANT sequence. Texture features were extracted from MRI images, and key radiomic and clinical features were selected using variance thresholding, correlation filtering, and logistic regression. A predictive model was developed combining these features, and its performance was evaluated through sensitivity, specificity, and area under the curve (AUC) metrics.

Results

The univariate models based on individual MRI sequences or clinical data demonstrated variable diagnostic performance. In contrast, the multifactorial model that combined radiomic features with clinical data achieved significantly higher accuracy, with an AUC of 0.829, sensitivity of 76.9 %, and specificity of 83.3 %.

Conclusion

Integrating MRI radiomics and clinical data enhances the preoperative prediction of vascular invasion in breast cancer. This approach can improve diagnostic accuracy, providing valuable insights for clinical decision-making and personalized treatment strategies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Magnetic resonance imaging
Magnetic resonance imaging 医学-核医学
CiteScore
4.70
自引率
4.00%
发文量
194
审稿时长
83 days
期刊介绍: Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信