Single cell RNA sequencing improves the next generation of approaches to AML treatment: challenges and perspectives.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zahra Khosroabadi, Samaneh Azaryar, Hassan Dianat-Moghadam, Zohreh Amoozgar, Mohammadreza Sharifi
{"title":"Single cell RNA sequencing improves the next generation of approaches to AML treatment: challenges and perspectives.","authors":"Zahra Khosroabadi, Samaneh Azaryar, Hassan Dianat-Moghadam, Zohreh Amoozgar, Mohammadreza Sharifi","doi":"10.1186/s10020-025-01085-w","DOIUrl":null,"url":null,"abstract":"<p><p>Acute myeloid leukemia (AML) is caused by altered maturation and differentiation of myeloid blasts, as well as transcriptional/epigenetic alterations, all leading to excessive proliferation of malignant blood cells in the bone marrow. Tumor heterogeneity due to the acquisition of new somatic alterations leads to a high rate of resistance to current therapies or reduces the efficacy of hematopoietic stem cell transplantation (HSCT), thus increasing the risk of relapse and mortality. Single-cell RNA sequencing (scRNA-seq) will enable the classification of AML and guide treatment approaches by profiling patients with different facets of the same disease, stratifying risk, and identifying new potential therapeutic targets at the time of diagnosis or after treatment. ScRNA-seq allows the identification of quiescent stem-like cells, and leukemia stem cells responsible for resistance to therapeutic approaches and relapse after treatment. This method also introduces the factors and mechanisms that enhance the efficacy of the HSCT process. Generated data of the transcriptional profile of the AML could even allow the development of cancer vaccines and CAR T-cell therapies while saving valuable time and alleviating dangerous side effects of chemotherapy and HSCT in vivo. However, scRNA-seq applications face various challenges such as a large amount of data for high-dimensional analysis, technical noise, batch effects, and finding small biological patterns, which could be improved in combination with artificial intelligence models.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"33"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783831/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-025-01085-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Acute myeloid leukemia (AML) is caused by altered maturation and differentiation of myeloid blasts, as well as transcriptional/epigenetic alterations, all leading to excessive proliferation of malignant blood cells in the bone marrow. Tumor heterogeneity due to the acquisition of new somatic alterations leads to a high rate of resistance to current therapies or reduces the efficacy of hematopoietic stem cell transplantation (HSCT), thus increasing the risk of relapse and mortality. Single-cell RNA sequencing (scRNA-seq) will enable the classification of AML and guide treatment approaches by profiling patients with different facets of the same disease, stratifying risk, and identifying new potential therapeutic targets at the time of diagnosis or after treatment. ScRNA-seq allows the identification of quiescent stem-like cells, and leukemia stem cells responsible for resistance to therapeutic approaches and relapse after treatment. This method also introduces the factors and mechanisms that enhance the efficacy of the HSCT process. Generated data of the transcriptional profile of the AML could even allow the development of cancer vaccines and CAR T-cell therapies while saving valuable time and alleviating dangerous side effects of chemotherapy and HSCT in vivo. However, scRNA-seq applications face various challenges such as a large amount of data for high-dimensional analysis, technical noise, batch effects, and finding small biological patterns, which could be improved in combination with artificial intelligence models.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Medicine
Molecular Medicine 医学-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
137
审稿时长
1 months
期刊介绍: Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信