Outlier removal in cryo-EM via radial profiles

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Lev Kapnulin , Ayelet Heimowitz , Nir Sharon
{"title":"Outlier removal in cryo-EM via radial profiles","authors":"Lev Kapnulin ,&nbsp;Ayelet Heimowitz ,&nbsp;Nir Sharon","doi":"10.1016/j.jsb.2025.108172","DOIUrl":null,"url":null,"abstract":"<div><div>The process of particle picking, a crucial step in cryo-electron microscopy (cryo-EM) image analysis, often encounters challenges due to outliers, leading to inaccuracies in downstream processing. In response to this challenge, this research introduces an additional automated step to reduce the number of outliers identified by the particle picker. The proposed method enhances both the accuracy and efficiency of particle picking, thereby reducing the overall running time and the necessity for expert intervention in the process. Experimental results demonstrate the effectiveness of the proposed approach in mitigating outlier inclusion and its potential to enhance cryo-EM data analysis pipelines significantly. This work contributes to the ongoing advancement of automated cryo-EM image processing methods, offering novel insights and solutions to challenges in structural biology research.</div></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":"217 1","pages":"Article 108172"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847725000073","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The process of particle picking, a crucial step in cryo-electron microscopy (cryo-EM) image analysis, often encounters challenges due to outliers, leading to inaccuracies in downstream processing. In response to this challenge, this research introduces an additional automated step to reduce the number of outliers identified by the particle picker. The proposed method enhances both the accuracy and efficiency of particle picking, thereby reducing the overall running time and the necessity for expert intervention in the process. Experimental results demonstrate the effectiveness of the proposed approach in mitigating outlier inclusion and its potential to enhance cryo-EM data analysis pipelines significantly. This work contributes to the ongoing advancement of automated cryo-EM image processing methods, offering novel insights and solutions to challenges in structural biology research.

Abstract Image

通过径向剖面去除低温电镜中的异常值。
作为低温电子显微镜(cryo-EM)图像分析的关键步骤,颗粒拾取过程经常因异常值而面临挑战,导致下游处理不准确。为了应对这一挑战,本研究引入了一个额外的自动化步骤,以减少颗粒拾取器识别的异常值的数量。该方法提高了颗粒拾取的精度和效率,从而减少了整体运行时间和专家干预的必要性。实验结果证明了该方法在减少异常值包含方面的有效性,并具有显著增强低温电镜数据分析管道的潜力。这项工作有助于自动冷冻电镜图像处理方法的持续发展,为结构生物学研究中的挑战提供新的见解和解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of structural biology
Journal of structural biology 生物-生化与分子生物学
CiteScore
6.30
自引率
3.30%
发文量
88
审稿时长
65 days
期刊介绍: Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure. Techniques covered include: • Light microscopy including confocal microscopy • All types of electron microscopy • X-ray diffraction • Nuclear magnetic resonance • Scanning force microscopy, scanning probe microscopy, and tunneling microscopy • Digital image processing • Computational insights into structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信